tests/testthat/test-compare-fit-stats.R

if(getOption("test_mplus")) {
    oldwd <- getwd()
    testdir <- file.path(tempdir(), "comparefitstats")
    dir.create(testdir)
    setwd(testdir)
    on.exit({
        setwd(oldwd)
        unlink(testdir, recursive = TRUE)
    })
    library(tibble)
    iris_df <- iris
    names(iris_df) <- gsub("\\.", "_", names(iris_df))
    test_that("fit stats are the same for both mplus and mclust", {
        tab_mclust <- tibble::tribble(
            ~ stat,
            ~ val,
            "Model",
            1,
            "Classes",
            2,
            "LogLik",
            -271.2943387,
            "AIC",
            556.5886774,
            "AWE",
            610.4725311,
            "BIC",
            566.8488288,
            "CAIC",
            573.8488288,
            "CLC",
            544.2251264,
            "KIC",
            566.5886774,
            "SABIC",
            545.0268243,
            "ICL",
            -569.7289846,
            "Entropy",
            0.818224466,
            "prob_min",
            0.95731999,
            "prob_max",
            0.960443609,
            "n_min",
            0.46875,
            "n_max",
            0.53125,
            "BLRT_val",
            22.53901766,
            "BLRT_p",
            0.00990099
        )

        # for benchmarking
        # createMixtures(classes = 2, filename_stem = "mtcars-mpg-hp", rdata = mtcars[, c("mpg", "hp")])
        # runModels(target = "mtcars-mpg-hp_2_class.inp")
        # o <- readModels("mtcars-mpg-hp_2_class.out")

        tab_benchmark <-
            tibble::tribble(
                # these are from benchmarking code above
                ~ stat,
                ~ val,
                "Model",
                1,
                "Classes",
                2,
                "LogLik",
                -271.292,
                "AIC",
                556.584,
                "BIC",
                566.844,
                "Entropy",
                0.819,
                "BLRT_val",
                22.544
            )
        tmp <- capture_output({
        m_cars_mplus <- estimate_profiles(
            mtcars[, c("mpg", "hp")],
            n_profiles = 2,
            models = 1,
            package = "MplusAutomation"
        )
        })

        m_cars_mclust <- estimate_profiles(mtcars[, c("mpg", "hp")],
                                           n_profiles = 2,
                                           models = 1)

        expect_equal(as.vector(m_cars_mplus$model_1_class_2$fit),
                     tab_mclust$val,
                     tolerance = .0001)
        expect_equal(as.vector(m_cars_mclust$model_1_class_2$fit),
                     tab_mclust$val,
                     tolerance = .0001)
        expect_equal(
            as.vector(m_cars_mplus$model_1_class_2$fit),
            as.vector(m_cars_mclust$model_1_class_2$fit),
            tolerance = .0001
        )

        kept_cases <-
            complete.cases(pisaUSA15[, c("broad_interest", "enjoyment", "self_efficacy")])
        tmp <- capture_output({
        m_pisa_mplus <-
            estimate_profiles(
                pisaUSA15[kept_cases, c("broad_interest", "enjoyment", "self_efficacy")],
                n_profiles = 3,
                models = 1,
                package = "MplusAutomation",
                keepfiles = TRUE
            )
        })
        m_pisa_mclust <-
            estimate_profiles(pisaUSA15[kept_cases, c("broad_interest", "enjoyment", "self_efficacy")],
                              n_profiles = 3,
                              models = 1)

        # THis test is NOT equal, probably due to local maximum?
        expect_equal(
            as.vector(m_pisa_mplus$model_1_class_3$fit),
            as.vector(m_pisa_mclust$model_1_class_3$fit),
            tolerance = 3
        )

        m_cars_mplus_benchmark_stats <-
            tibble(
                stat = names(m_cars_mplus$model_1_class_2$fit),
                val = m_cars_mplus$model_1_class_2$fit
            )

        m_cars_mclust_benchmark_stats <-
            tibble(
                stat = names(m_cars_mclust$model_1_class_2$fit),
                val = m_cars_mclust$model_1_class_2$fit
            )

        m_cars_mplus_benchmark_stats <-
            m_cars_mplus_benchmark_stats[m_cars_mplus_benchmark_stats$stat %in% tab_benchmark$stat,]
        m_cars_mclust_benchmark_stats <-
            m_cars_mclust_benchmark_stats[m_cars_mclust_benchmark_stats$stat %in% tab_benchmark$stat,]

        expect_equivalent(m_cars_mplus_benchmark_stats$val,
                     tab_benchmark$val,
                     tolerance = .0001)
        expect_equivalent(m_cars_mclust_benchmark_stats$val,
                     tab_benchmark$val,
                     tolerance = .0001)
    })

    test_that("fit stats are equal to those from models estimated externally in Mplus",
              {
                  tmp <- capture_output({
                  # Model 1
                  suppressWarnings({
                      m_cars_mplus_model1 <-
                          estimate_profiles(
                              iris_df[, c("Sepal_Length",
                                          "Sepal_Width",
                                          "Petal_Length",
                                          "Petal_Width")],
                              n_profiles = 2,
                              models = 1,
                              package = "MplusAutomation"
                          )

                      m_cars_mclust_model1 <-
                          estimate_profiles(iris_df[, c("Sepal_Length",
                                                        "Sepal_Width",
                                                        "Petal_Length",
                                                        "Petal_Width")],
                                            n_profiles = 2,
                                            models = 1)

                      # Model 2
                      m_cars_mplus_model2 <-
                          estimate_profiles(
                              iris_df[, c("Sepal_Length",
                                          "Sepal_Width",
                                          "Petal_Length",
                                          "Petal_Width")],
                              n_profiles = 2,
                              models = 2,
                              package = "MplusAutomation"
                          )

                      m_cars_mclust_model2 <-
                          estimate_profiles(iris_df[, c("Sepal_Length",
                                                        "Sepal_Width",
                                                        "Petal_Length",
                                                        "Petal_Width")],
                                            n_profiles = 2,
                                            models = 2)

                      # Model 3
                      m_cars_mplus_model3 <-
                          estimate_profiles(
                              iris_df[, c("Sepal_Length",
                                          "Sepal_Width",
                                          "Petal_Length",
                                          "Petal_Width")],
                              n_profiles = 2,
                              models = 3,
                              package = "MplusAutomation"
                          )

                      m_cars_mclust_model3 <-
                          estimate_profiles(iris_df[, c("Sepal_Length",
                                                        "Sepal_Width",
                                                        "Petal_Length",
                                                        "Petal_Width")],
                                            n_profiles = 2,
                                            models = 3)

                      # Model 6
                      m_cars_mplus_model6 <-
                          estimate_profiles(
                              iris_df[, c("Sepal_Length",
                                          "Sepal_Width",
                                          "Petal_Length",
                                          "Petal_Width")],
                              n_profiles = 2,
                              models = 6,
                              package = "MplusAutomation"
                          )

                      m_cars_mclust_model6 <-
                          estimate_profiles(iris_df[, c("Sepal_Length",
                                                        "Sepal_Width",
                                                        "Petal_Length",
                                                        "Petal_Width")],
                                            n_profiles = 2,
                                            models = 6)
                  })
                  })

                  iris_log_lik <- tribble(~ model,
                                          ~ logLik,
                                          1,
                                          -488.915,
                                          2,
                                          -386.185,
                                          3,
                                          -296.448,
                                          6,
                                          -214.355)

                  iris_log_lik$mplus <-
                      c(
                          m_cars_mplus_model1$model_1_class_2$fit[3],
                          m_cars_mplus_model2$model_2_class_2$fit[3],
                          m_cars_mplus_model3$model_3_class_2$fit[3],
                          m_cars_mplus_model6$model_6_class_2$fit[3]
                      )

                  iris_log_lik$mclust <-
                      c(
                          m_cars_mclust_model1$model_1_class_2$model$loglik,
                          m_cars_mclust_model2$model_2_class_2$model$loglik,
                          m_cars_mclust_model3$model_3_class_2$model$loglik,
                          m_cars_mclust_model6$model_6_class_2$model$loglik
                      )

                  expect_equivalent(iris_log_lik$logLik, iris_log_lik$mplus,
                               tolerance = .0001)

                  expect_equivalent(iris_log_lik$logLik, iris_log_lik$mclust,
                               tolerance = .0001)

                  expect_equivalent(iris_log_lik$mplus, iris_log_lik$mclust,
                               tolerance = .0001)

              })
}

Try the tidyLPA package in your browser

Any scripts or data that you put into this service are public.

tidyLPA documentation built on Nov. 17, 2021, 5:07 p.m.