Nothing
#' Aggregates a group of returns by asset into portfolio returns
#'
#' @param data A `tibble` (tidy data frame) of returns in tidy format (i.e long format).
#' @param assets_col The column with assets (securities)
#' @param returns_col The column with returns
#' @param weights Optional parameter for the asset weights, which can be passed as a numeric vector the length of
#' the number of assets or a two column tibble with asset names in first column
#' and weights in second column.
#' @param col_rename A string or character vector containing names that can be used
#' to quickly rename columns.
#' @param n Number of times to repeat a data frame row-wise.
#' @param index_col_name A renaming function for the "index" column, used when repeating data frames.
#' @param ... Additional parameters passed to `PerformanceAnalytics::Return.portfolio`
#'
#' @return Returns data in the form of a `tibble` object.
#'
#' @details `tq_portfolio` is a wrapper for `PerformanceAnalytics::Return.portfolio`.
#' The main advantage is the results are returned as a `tibble` and the
#' function can be used with the `tidyverse`.
#'
#' `assets_col` and `returns_col` are columns within `data` that are used
#' to compute returns for a portfolio. The columns should be in "long" format (or "tidy" format)
#' meaning there is only one column containing all of the assets and one column containing
#' all of the return values (i.e. not in "wide" format with returns spread by asset).
#'
#' `weights` are the weights to be applied to the asset returns.
#' Weights can be input in one of three options:
#' \itemize{
#' \item Single Portfolio: A numeric vector of weights that is the same length as unique number of assets.
#' The weights are applied in the order of the assets.
#' \item Single Portfolio: A two column tibble with assets in the first column and weights in the second column.
#' The advantage to this method is the weights are mapped to the assets and any unlisted
#' assets default to a weight of zero.
#' \item Multiple Portfolios: A three column tibble with portfolio index in the first
#' column, assets in the second column, and weights in the third column. The tibble
#' must be grouped by portfolio index.
#' }
#'
#' `tq_repeat_df` is a simple function that repeats
#' a data frame `n` times row-wise (long-wise), and adds a new column for a portfolio index.
#' The function is used to assist in Multiple Portfolio analyses, and
#' is a useful precursor to `tq_portfolio`.
#'
#' @seealso
#' \itemize{
#' \item [tq_transmute()] which can be used to get period returns.
#' \item [PerformanceAnalytics::Return.portfolio()] which is the underlying function
#' that specifies which parameters can be passed via `...`
#' }
#'
#'
#' @name tq_portfolio
#'
#' @export
#'
#' @examples
#' # Load libraries
#' library(dplyr)
#'
#' # Use FANG data set
#'
#' # Get returns for individual stock components
#' monthly_returns_stocks <- FANG %>%
#' group_by(symbol) %>%
#' tq_transmute(adjusted, periodReturn, period = "monthly")
#'
#' ##### Portfolio Aggregation Methods #####
#'
#' # Method 1: Use tq_portfolio with numeric vector of weights
#'
#' weights <- c(0.50, 0.25, 0.25, 0)
#' tq_portfolio(data = monthly_returns_stocks,
#' assets_col = symbol,
#' returns_col = monthly.returns,
#' weights = weights,
#' col_rename = NULL,
#' wealth.index = FALSE)
#'
#' # Method 2: Use tq_portfolio with two column tibble and map weights
#'
#' # Note that GOOG's weighting is zero in Method 1. In Method 2,
#' # GOOG is not added and same result is achieved.
#' weights_df <- tibble(symbol = c("META", "AMZN", "NFLX"),
#' weights = c(0.50, 0.25, 0.25))
#' tq_portfolio(data = monthly_returns_stocks,
#' assets_col = symbol,
#' returns_col = monthly.returns,
#' weights = weights_df,
#' col_rename = NULL,
#' wealth.index = FALSE)
#'
#' # Method 3: Working with multiple portfolios
#'
#' # 3A: Duplicate monthly_returns_stocks multiple times
#' mult_monthly_returns_stocks <- tq_repeat_df(monthly_returns_stocks, n = 4)
#'
#' # 3B: Create weights table grouped by portfolio id
#' weights <- c(0.50, 0.25, 0.25, 0.00,
#' 0.00, 0.50, 0.25, 0.25,
#' 0.25, 0.00, 0.50, 0.25,
#' 0.25, 0.25, 0.00, 0.50)
#' stocks <- c("META", "AMZN", "NFLX", "GOOG")
#' weights_table <- tibble(stocks) %>%
#' tq_repeat_df(n = 4) %>%
#' bind_cols(tibble(weights)) %>%
#' group_by(portfolio)
#'
#' # 3C: Scale to multiple portfolios
#' tq_portfolio(data = mult_monthly_returns_stocks,
#' assets_col = symbol,
#' returns_col = monthly.returns,
#' weights = weights_table,
#' col_rename = NULL,
#' wealth.index = FALSE)
# tq_portfolio ------------------------------------------------------------------------------------------------
#' @rdname tq_portfolio
#' @export
tq_portfolio <- function(data, assets_col, returns_col, weights = NULL, col_rename = NULL, ...) {
# NSE
tq_portfolio_(data = data,
assets_col = lazyeval::expr_text(assets_col),
returns_col = lazyeval::expr_text(returns_col),
weights = weights,
col_rename = col_rename,
... = ...)
}
#' @rdname tq_portfolio
#' @export
tq_portfolio_ <- function(data, assets_col, returns_col, weights = NULL, col_rename = NULL, ...) {
UseMethod("tq_portfolio_", data)
}
# tq_portfolio method dispatch --------------------------------------------------------------------------------
#' @export
tq_portfolio_.default <- function(data, assets_col, returns_col, weights = NULL, col_rename = NULL, ...) {
# Error message
stop("data must be a tibble or data.frame object")
}
#' @export
tq_portfolio_.tbl_df <- function(data, assets_col, returns_col, weights, col_rename, ...) {
tq_portfolio_base_(data = data,
assets_col = assets_col,
returns_col = returns_col,
weights = weights,
col_rename = col_rename,
...)
}
#' @export
tq_portfolio_.data.frame <- function(data, assets_col, returns_col, weights = NULL, col_rename = NULL, ...) {
# Convert data.frame to tibble
data <- tibble::as_tibble(data)
# Call tq_portfolio_ for a tibble
tq_portfolio_(data = data,
assets_col = assets_col,
returns_col = returns_col,
weights = weights,
col_rename = col_rename,
... = ...)
}
#' @export
tq_portfolio_.grouped_df <- function(data, assets_col, returns_col, weights, col_rename, ...) {
# Single portfolio. Ungroup and use tq_portfolio_.tbl_df()
if(colnames(data)[[1]] != "portfolio") {
# Ungroup tibble
data <- dplyr::ungroup(data)
# Run for 1 portfolio
ret <- tq_portfolio_(data = data,
assets_col = assets_col,
returns_col = returns_col,
weights = weights,
col_rename = col_rename,
... = ...)
# Return results
return(ret)
}
# Otherwise, multiple portfolios
# Check weights and data compatibility
check_data_weights_compatibility(data, weights)
# Get groups
group_names_data <- dplyr::group_vars(data)
# Format data
data_nested <- data %>%
tidyr::nest() %>%
dplyr::rename(returns.. = data)
# Format weights
weights_nested <- weights %>%
tidyr::nest() %>%
dplyr::rename(weights.. = data)
# Join data and weights
y <- names(data_nested)[[1]]
x <- names(weights_nested)[[1]]
data_weights <- left_join(data_nested, weights_nested, by = purrr::set_names(x, y))
# Custom function for mapping
custom_function <- function(x, y, z) {
tq_portfolio_(data = x,
weights = y,
assets_col = assets_col,
returns_col = returns_col,
col_rename = col_rename,
# check_weights() arguments
map = TRUE,
x = z,
... = ...)
}
# Map data and weights to tq_portfolio_.tbl_df()
data_weights %>%
dplyr::mutate(
portfolio.. = purrr::pmap(list(returns.., weights.., portfolio), custom_function),
class.. = purrr::map_chr(.x = portfolio.., .f = function(x) class(x)[[1]])
) %>%
dplyr::filter(class.. != "logical") %>%
dplyr::select(-c(returns.., weights.., class..)) %>%
tidyr::unnest(cols = portfolio..) %>%
dplyr::group_by_at(.vars = group_names_data)
}
#' @export
tq_portfolio_.tbl_time <- function(data, assets_col, returns_col, weights = NULL, col_rename = NULL, ...) {
if(!requireNamespace("tibbletime", quietly = TRUE)) {
stop("tibbletime must be installed to use a tidyquant function on a tbl_time object.", call. = FALSE)
}
tibbletime::reconstruct(NextMethod(), data)
}
# tq_portfolio core function --------------------------------------------------------------------------------
tq_portfolio_base_ <- function(data, assets_col, returns_col, weights, col_rename, map = FALSE, x = NULL, ...) {
# Find date or date-time col
date_col_name <- get_col_name_date_or_date_time(data)
# Get timezone
time_zone <- get_time_zone(data, date_col_name)
# Select date
date_col <- dplyr::select(data, !!rlang::sym(date_col_name))
# Re-map assets and returns column names
returns_col_name <- returns_col
assets_col_name <- assets_col
returns_col <- dplyr::select(data, !!rlang::sym(returns_col))
assets_col <- dplyr::select(data, !!rlang::sym(assets_col))
# Apply function
ret <- tryCatch({
# Handle weights
check_weights(weights, assets_col, map, x)
# Solve issue with spread re-ordering column names alphabetically
# if (is.data.frame(weights)) weights <- map_weights(weights, assets_col)
# Note that weights are resorted to match spread reorder to alphabetical
weights <- map_weights(weights, assets_col)
# Spread for xts form and apply Return.portfolio()
data %>%
dplyr::select(!!!rlang::syms(c(date_col_name, assets_col_name, returns_col_name))) %>%
tidyr::spread(
key = dplyr::all_of(assets_col_name),
value = dplyr::all_of(returns_col_name)
) %>%
timetk::tk_xts(silent = TRUE) %>%
PerformanceAnalytics::Return.portfolio(weights = weights, verbose = FALSE, ...)
}, error = function(e) {
warn <- e
# if (map == TRUE) warn <- paste0(x, " had the following error: ", e, ". Removing portfolio ", x, ".")
warning(warn)
# Return NA on error
return(NA)
})
# Coerce to tibble and convert date / datetime
if (xts::is.xts(ret)) ret <- coerce_to_tibble(ret, date_col_name,
time_zone, col_rename)
ret
}
# Utility ---------------------------------------------------------------------------------------------------
#' @rdname tq_portfolio
#' @export
tq_repeat_df <- function(data, n, index_col_name = "portfolio") {
if (!is.data.frame(data)) stop("data must be a tibble or data frame.")
if (is.grouped_df(data)) {
message(paste("Ungrouping data frame groups:", dplyr::groups(data)))
data <- ungroup(data)
}
data_mult <- data[rep(seq_len(nrow(data)), n),]
index <- rep(1:n, each = nrow(data))
ret <- dplyr::bind_cols(tibble(index), data_mult)
colnames(ret)[[1]] <- index_col_name
ret <- ret %>%
dplyr::group_by_at(.vars = index_col_name)
ret
}
map_weights <- function(weights, assets_col) {
if (is.data.frame(weights)) {
# Get names
y <- names(assets_col)[[1]]
x <- names(weights)[[1]]
# arrange added to sort in alphabetic order, which matches spread order
ret <- dplyr::left_join(unique(assets_col), weights,
by = purrr::set_names(x, y)) %>%
dplyr::rename(weights = !!rlang::sym(names(weights)[[2]])) %>%
tidyr::replace_na(list(weights = 0)) %>%
dplyr::arrange(!!rlang::sym(y)) %>%
dplyr::select(weights) %>%
unlist() %>%
as.numeric()
} else {
# must be numeric
# Default equal weights
if(is.null(weights)) {
return(weights)
}
ret <- dplyr::bind_cols(unique(assets_col), tibble::tibble(weights))
colnames(ret) <- c("assets", "weights")
ret <- ret %>%
dplyr::arrange(assets) %>%
dplyr::select(weights) %>%
unlist() %>%
as.numeric()
}
ret
}
check_weights <- function(weights, assets_col, map, x) {
if (inherits(weights, "data.frame")) {
unique_weights <- unique(weights[,1]) %>% unlist() %>% unname()
unique_assets <- unique(assets_col) %>% unlist() %>% unname()
if (all(unique_weights %in% unique_assets)) {
if (ncol(weights) == 2) {
if (sum(weights[,2]) == 1) {
return()
} else {
warn <- ""
if (map == TRUE) warn <- paste0("Portfolio ", x, ": ")
warning(paste0(warn, "Sum of weights does not equal 1."))
}
} else {
warning("Incorrect number of columns. Only two allowed.")
}
} else {
warning("The assets in weights does not match the assets in data.")
}
} else if (is.numeric(weights)) {
if (length(weights) == assets_col %>% unique() %>% nrow()) {
if (sum(weights) == 1) {
return()
} else {
warning("Sum of weights must be 1.")
}
} else {
warning("The number of weights does not match the number of unique assets.")
}
} else if (is.null(weights)) {
message("No portfolio weights supplied. Implementing equal weighting.")
return()
} else {
warning("Incorrect data type for weights. Valid options are data frame, numeric vector, or NULL.")
}
}
check_data_weights_compatibility <- function(data, weights) {
# Weights has one group
if (length(dplyr::groups(weights)) != 1) {
stop("weights must be grouped by portfolio index.")
}
# Weights has 3 columns
if (ncol(weights) != 3) {
stop("weights table must have three columns: portfolio index, assets, and weights to map.")
}
# Data has one group
if (length(dplyr::groups(data)) != 1) {
stop("data must be grouped by portfolio index.")
}
# Groups for data and weights match
if (colnames(data)[[1]] != colnames(weights)[[1]]) {
stop("First column (portfolio index) of data must match first column (portfolio index) of weights.")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.