Nothing
#' The Bone Marrow Transplant Data
#'
#' Bone marrow transplant data with 408 rows and 5 columns.
#'
#'
#' @format The data has 408 rows and 5 columns. \describe{ \item{cause}{a
#' numeric vector code. Survival status. 1: dead from treatment related
#' causes, 2: relapse , 0: censored.} \item{time}{ a numeric vector. Survival
#' time. } \item{platelet}{a numeric vector code. Plalelet 1: more than 100 x
#' \eqn{10^9} per L, 0: less.} \item{tcell}{a numeric vector. T-cell depleted
#' BMT 1:yes, 0:no.} \item{age}{a numeric vector code. Age of patient, scaled
#' and centered ((age-35)/15).} }
#' @references NN
#' @name bmt
#' @docType data
#' @source Simulated data
#' @keywords package
#' @examples
#'
#' data(bmt)
#' names(bmt)
#'
NULL
#' The multicenter AIDS cohort study
#'
#' CD4 counts collected over time.
#'
#'
#' @format This data frame contains the following columns: \describe{
#' \item{obs}{a numeric vector. Number of observations.} \item{id}{a numeric
#' vector. Id of subject.} \item{visit}{ a numeric vector. Timings of the
#' visits in years.} \item{smoke}{a numeric vector code. 0: non-smoker, 1:
#' smoker.} \item{age}{a numeric vector. Age of the patient at the start of the
#' trial.} \item{cd4}{a numeric vector. CD4 percentage at the current visit.}
#' \item{cd4.prev}{a numeric vector. CD4 level at the preceding visit.}
#' \item{precd4}{a numeric vector. Post-infection CD4 percentage.} \item{lt}{a
#' numeric vector. Gives the starting time for the time-intervals.} \item{rt}{a
#' numeric vector. Gives the stopping time for the time-interval.} }
#' @references Kaslow et al. (1987), The multicenter AIDS cohort study:
#' rational, organisation and selected characteristics of the participants.
#' Am. J. Epidemiology 126, 310--318.
#' @source MACS Public Use Data Set Release PO4 (1984-1991). See reference.
#' @name cd4
#' @docType data
#' @keywords package
#' @examples
#'
#' data(cd4)
#' names(cd4)
#'
NULL
#' CSL liver chirrosis data
#'
#' Survival status for the liver chirrosis patients of Schlichting et al.
#'
#'
#' @format This data frame contains the following columns: \describe{
#' \item{id}{ a numeric vector. Id of subject. }
#'
#' \item{time}{ a numeric vector. Time of measurement. } \item{prot}{ a
#' numeric vector. Prothrombin level at measurement time. } \item{dc}{ a
#' numeric vector code. 0: censored observation, 1: died at eventT. }
#' \item{eventT}{ a numeric vector. Time of event (death). } \item{treat}{ a
#' numeric vector code. 0: active treatment of prednisone, 1: placebo
#' treatment. } \item{sex}{ a numeric vector code. 0: female, 1: male. }
#' \item{age}{ a numeric vector. Age of subject at inclusion time subtracted
#' 60. } \item{prot.base}{ a numeric vector. Prothrombin base level before
#' entering the study. } \item{prot.prev}{ a numeric vector. Level of
#' prothrombin at previous measurement time. } \item{lt}{ a numeric vector.
#' Gives the starting time for the time-intervals. } \item{rt}{ a numeric
#' vector. Gives the stopping time for the time-intervals. } }
#' @references Schlichting, P., Christensen, E., Andersen, P., Fauerholds, L.,
#' Juhl, E., Poulsen, H. and Tygstrup, N. (1983), The Copenhagen Study Group
#' for Liver Diseases, Hepatology 3, 889--895
#' @name csl
#' @docType data
#' @keywords package
#' @source P.K. Andersen
#' @examples
#'
#' data(csl)
#' names(csl)
#'
NULL
#' The Diabetic Retinopathy Data
#'
#' The data was colleceted to test a laser treatment for delaying blindness in
#' patients with dibetic retinopathy. The subset of 197 patiens given in Huster
#' et al. (1989) is used.
#'
#'
#' @format This data frame contains the following columns: \describe{
#' \item{id}{a numeric vector. Patient code.} \item{agedx}{a numeric vector.
#' Age of patient at diagnosis.} \item{time}{a numeric vector. Survival time:
#' time to blindness or censoring.} \item{status}{ a numeric vector code.
#' Survival status. 1: blindness, 0: censored.} \item{trteye}{a numeric vector
#' code. Random eye selected for treatment. 1: left eye 2: right eye.}
#' \item{treat}{a numeric vector. 1: treatment 0: untreated.} \item{adult}{a
#' numeric vector code. 1: younger than 20, 2: older than 20.} }
#' @source Huster W.J. and Brookmeyer, R. and Self. S. (1989) MOdelling paired
#' survival data with covariates, Biometrics 45, 145-56.
#' @name diabetes
#' @docType data
#' @keywords package
#' @examples
#'
#' data(diabetes)
#' names(diabetes)
#'
NULL
#' Melanoma data and Danish population mortality by age and sex
#'
#' Melanoma data with background mortality of Danish population.
#'
#'
#' @format This data frame contains the following columns: \describe{
#' \item{id}{ a numeric vector. Gives patient id. } \item{sex}{ a numeric
#' vector. Gives sex of patient. } \item{start}{ a numeric vector. Gives the
#' starting time for the time-interval for which the covariate rate is
#' representative. } \item{stop}{ a numeric vector. Gives the stopping time
#' for the time-interval for which the covariate rate is representative. }
#' \item{status}{ a numeric vector code. Survival status. 1: dead from
#' melanoma, 0: alive or dead from other cause. } \item{age}{ a numeric vector.
#' Gives the age of the patient at removal of tumor. } \item{rate}{ a numeric
#' vector. Gives the population mortality for the given sex and age. Based on
#' Table A.2 in Andersen et al. (1993). } }
#' @source Andersen, P.K., Borgan O, Gill R.D., Keiding N. (1993),
#' \emph{Statistical Models Based on Counting Processes}, Springer-Verlag.
#' @name mela.pop
#' @docType data
#' @keywords package
#' @examples
#'
#' data(mela.pop)
#' names(mela.pop)
#'
NULL
#' The Melanoma Survival Data
#'
#' The melanoma data frame has 205 rows and 7 columns. It contains data
#' relating to survival of patients after operation for malignant melanoma
#' collected at Odense University Hospital by K.T. Drzewiecki.
#'
#'
#' @format This data frame contains the following columns: \describe{
#' \item{no}{ a numeric vector. Patient code. } \item{status}{ a numeric vector
#' code. Survival status. 1: dead from melanoma, 2: alive, 3: dead from other
#' cause. } \item{days}{ a numeric vector. Survival time. } \item{ulc}{ a
#' numeric vector code. Ulceration, 1: present, 0: absent. } \item{thick}{ a
#' numeric vector. Tumour thickness (1/100 mm). } \item{sex}{ a numeric vector
#' code. 0: female, 1: male. } }
#' @source Andersen, P.K., Borgan O, Gill R.D., Keiding N. (1993),
#' \emph{Statistical Models Based on Counting Processes}, Springer-Verlag.
#'
#' Drzewiecki, K.T., Ladefoged, C., and Christensen, H.E. (1980), Biopsy and
#' prognosis for cutaneous malignant melanoma in clinical stage I. Scand. J.
#' Plast. Reconstru. Surg. 14, 141-144.
#' @name melanoma
#' @docType data
#' @keywords package
#' @examples
#'
#' data(melanoma)
#' names(melanoma)
#'
NULL
#' The TRACE study group of myocardial infarction
#'
#' The TRACE data frame contains 1877 patients and is a subset of a data set
#' consisting of approximately 6000 patients. It contains data relating
#' survival of patients after myocardial infarction to various risk factors.
#'
#' sTRACE is a subsample consisting of 300 patients.
#'
#' tTRACE is a subsample consisting of 1000 patients.
#'
#'
#' @aliases TRACE sTRACE tTRACE
#' @format This data frame contains the following columns: \describe{
#' \item{id}{a numeric vector. Patient code. } \item{status}{ a numeric vector
#' code. Survival status. 9: dead from myocardial infarction, 0: alive, 7: dead
#' from other causes. } \item{time}{ a numeric vector. Survival time in years.
#' } \item{chf}{ a numeric vector code. Clinical heart pump failure, 1:
#' present, 0: absent. } \item{diabetes}{ a numeric vector code. Diabetes, 1:
#' present, 0: absent. } \item{vf}{ a numeric vector code. Ventricular
#' fibrillation, 1: present, 0: absent. } \item{wmi}{ a numeric vector.
#' Measure of heart pumping effect based on ultrasound measurements where 2 is
#' normal and 0 is worst. } \item{sex}{ a numeric vector code. 1: female, 0:
#' male. } \item{age}{ a numeric vector code. Age of patient. } }
#' @source The TRACE study group.
#'
#' Jensen, G.V., Torp-Pedersen, C., Hildebrandt, P., Kober, L., F. E. Nielsen,
#' Melchior, T., Joen, T. and P. K. Andersen (1997), Does in-hospital
#' ventricular fibrillation affect prognosis after myocardial infarction?,
#' European Heart Journal 18, 919--924.
#' @name TRACE
#' @docType data
#' @keywords package
#' @examples
#'
#' data(TRACE)
#' names(TRACE)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.