Plotting Time Series

knitr::opts_chunk$set(
  message = FALSE,
  warning = FALSE,
  fig.width = 8, 
  fig.height = 4.5,
  fig.align = 'center',
  out.width='95%', 
  dpi = 100,
  collapse = TRUE,
  comment = "#>"
)

timetk: A toolkit for time series analysis in the tidyverse

knitr::include_graphics("timetk_version_2.jpg")

This tutorial focuses on, plot_time_series(), a workhorse time-series plotting function that:

library(tidyverse)
library(lubridate)
library(timetk)

# Setup for the plotly charts (# FALSE returns ggplots)
interactive <- FALSE

Plotting Single Time Series

Let's start with a popular time series, taylor_30_min, which includes energy demand in megawatts at a sampling interval of 30-minutes. This is a single time series.

taylor_30_min

The plot_time_series() function generates an interactive plotly chart by default.

taylor_30_min %>% 
  plot_time_series(date, value, 
                   .interactive = interactive,
                   .plotly_slider = TRUE)

Plotting Groups

Next, let's move on to a dataset with time series groups, m4_daily, which is a sample of 4 time series from the M4 competition that are sampled at a daily frequency.

m4_daily %>% group_by(id)

Visualizing grouped data is as simple as grouping the data set with group_by() prior to piping into the plot_time_series() function. Key points:

m4_daily %>%
  group_by(id) %>%
  plot_time_series(date, value, 
                   .facet_ncol = 2, .facet_scales = "free",
                   .interactive = interactive)

Visualizing Transformations & Sub-Groups

Let's switch to an hourly dataset with multiple groups. We can showcase:

  1. Log transformation to the .value
  2. Use of .color_var to highlight sub-groups.
m4_hourly %>% group_by(id)

The intent is to showcase the groups in faceted plots, but to highlight weekly windows (sub-groups) within the data while simultaneously doing a log() transformation to the value. This is simple to do:

  1. .value = log(value) Applies the Log Transformation
  2. .color_var = week(date) The date column is transformed to a lubridate::week() number. The color is applied to each of the week numbers.
m4_hourly %>%
  group_by(id) %>%
  plot_time_series(date, log(value),             # Apply a Log Transformation
                   .color_var = week(date),      # Color applied to Week transformation
                   # Facet formatting
                   .facet_ncol = 2, 
                   .facet_scales = "free", 
                   .interactive = interactive)

Static ggplot2 Visualizations & Customizations

All of the visualizations can be converted from interactive plotly (great for exploring and shiny apps) to static ggplot2 visualizations (great for reports).

taylor_30_min %>%
  plot_time_series(date, value, 
                   .color_var = month(date, label = TRUE),

                   # Returns static ggplot
                   .interactive = FALSE,  

                   # Customization
                   .title = "Taylor's MegaWatt Data",
                   .x_lab = "Date (30-min intervals)",
                   .y_lab = "Energy Demand (MW)",
                   .color_lab = "Month") +
  scale_y_continuous(labels = scales::comma_format())

Learning More

My Talk on High-Performance Time Series Forecasting

Time series is changing. Businesses now need 10,000+ time series forecasts every day.

High-Performance Forecasting Systems will save companies MILLIONS of dollars. Imagine what will happen to your career if you can provide your organization a "High-Performance Time Series Forecasting System" (HPTSF System).

I teach how to build a HPTFS System in my High-Performance Time Series Forecasting Course. If interested in learning Scalable High-Performance Forecasting Strategies then take my course. You will learn:

Unlock the High-Performance Time Series Forecasting Course



Try the timetk package in your browser

Any scripts or data that you put into this service are public.

timetk documentation built on Jan. 19, 2021, 1:06 a.m.