View source: R/augment-tk_augment_differences.R
tk_augment_differences | R Documentation |
A handy function for adding multiple lagged difference values to a data frame.
Works with dplyr
groups too.
tk_augment_differences(
.data,
.value,
.lags = 1,
.differences = 1,
.log = FALSE,
.names = "auto"
)
.data |
A tibble. |
.value |
One or more column(s) to have a transformation applied. Usage
of |
.lags |
One or more lags for the difference(s) |
.differences |
The number of differences to apply. |
.log |
If TRUE, applies log-differences. |
.names |
A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns. |
Benefits
This is a scalable function that is:
Designed to work with grouped data using dplyr::group_by()
Add multiple differences by adding a sequence of differences using
the .lags
argument (e.g. lags = 1:20
)
Returns a tibble
object describing the timeseries.
Augment Operations:
tk_augment_timeseries_signature()
- Group-wise augmentation of timestamp features
tk_augment_holiday_signature()
- Group-wise augmentation of holiday features
tk_augment_slidify()
- Group-wise augmentation of rolling functions
tk_augment_lags()
- Group-wise augmentation of lagged data
tk_augment_differences()
- Group-wise augmentation of differenced data
tk_augment_fourier()
- Group-wise augmentation of fourier series
Underlying Function:
diff_vec()
- Underlying function that powers tk_augment_differences()
library(dplyr)
m4_monthly %>%
group_by(id) %>%
tk_augment_differences(value, .lags = 1:20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.