tests/testthat/test_pcount.R

context("stan_pcount function and methods")

skip_on_cran()

#Simulate dataset
set.seed(123)
M <- 50
J <- 5
beta <- c(1, 0.5, 0.2, -0.4)

sc <- data.frame(x1=rnorm(M), x2=sample(letters[1:26],M,replace=T),
                stringsAsFactors=TRUE)
oc <- data.frame(x3=rnorm(M*J))

lambda <- exp(beta[1] + beta[2]*sc$x1) #+ rx2[rx_idx])
N <- rpois(M, lambda)
p <- plogis(beta[3] + beta[4]*oc$x3)

y <- matrix(NA, M, J)
idx <- 1
for (i in 1:M){
  y[i,] <- rbinom(J, N[i], p[idx:(idx+J-1)])
  idx <- idx + J
}

umf <- unmarkedFramePCount(y=y,siteCovs=sc, obsCovs=oc)

umf2 <- umf
umf2@y[1,] <- NA
umf2@y[2,1] <- NA

good_fit <- TRUE
tryCatch({
fit <- suppressWarnings(stan_pcount(~x3~x1, umf[1:10,], K=15,
                                    chains=2, iter=100, refresh=0))

fit_na <- suppressWarnings(stan_pcount(~x3~x1, umf2[1:10,], K=15,
                                       chains=2, iter=100, refresh=0))
}, error=function(e){
  good_fit <<- FALSE
})
skip_if(!good_fit, "Test setup failed")

test_that("stan_pcount output structure is correct",{
  expect_is(fit, "ubmsFitPcount")
  expect_is(fit, "ubmsFitAbun")
  expect_equal(nsamples(fit), 100)
})

test_that("stan_pcount produces accurate results",{
  skip_on_cran()
  skip_on_ci()
  skip_on_covr()
  set.seed(123)
  fit_long <- suppressWarnings(stan_pcount(~x3~x1, umf, K=15, chains=2,
                                           iter=300, refresh=0))
  fit_unm <- pcount(~x3~x1, umf, K=15)
  #similar to truth
  expect_RMSE(coef(fit_long), beta, 0.2)
  #similar to unmarked
  expect_RMSE(coef(fit_long), coef(fit_unm), 0.05)
  #similar to previous known values
  expect_RMSE(coef(fit_long), c(0.96637,0.54445,0.02651,-0.3631), 0.05)
})

test_that("offsets work with stan_pcount",{
  skip_on_cran()
  skip_on_ci()
  skip_on_covr()
  set.seed(123)
  umf@siteCovs$area <- runif(numSites(umf), 0, 1)
  fit_long <- suppressWarnings(stan_pcount(~x3~x1+offset(log(area)), umf, K=15, chains=2,
                                           iter=300, refresh=0))
  fit_unm <- pcount(~x3~x1+offset(log(area)), umf, K=15)
  expect_RMSE(coef(fit_long), coef(fit_unm), 0.05)

  pr_stan <- predict(fit_long, "state")
  pr_unm <- predict(fit_unm, "state")
  expect_RMSE(pr_stan$Predicted, pr_unm$Predicted, 0.1)
})


test_that("stan_pcount handles NA values",{
  expect_true(is.numeric(coef(fit_na)))
})

test_that("extract_log_lik method works",{
  ll <- extract_log_lik(fit)
  expect_is(ll, "matrix")
  expect_equal(dim(ll), c(100/2 * 2, numSites(fit@data))) 
  expect_between(sum(ll), -7000, -6000) 
})

test_that("ubmsFitPcount gof method works",{
  set.seed(123)
  g <- gof(fit, draws=5, quiet=TRUE)
  expect_between(g@estimate, 30, 100)
  gof_plot_method <- methods::getMethod("plot", "ubmsGOF")
  pdf(NULL)
  pg <- gof_plot_method(g)
  dev.off()
  expect_is(pg, "gg")
})

test_that("ubmsFitPcount gof method works with missing values",{
  set.seed(123)
  g <- gof(fit_na, draws=5, quiet=TRUE)
  expect_is(g, "ubmsGOF")
})

test_that("ubmsFitPcount predict method works",{
  pr <- predict(fit_na, "state")
  expect_is(pr, "data.frame")
  expect_equal(dim(pr), c(10, 4))
  expect_between(pr[1,1], 0, 15)
  pr <- predict(fit_na, "det")
  expect_equal(dim(pr), c(10*obsNum(umf2),4))
  expect_between(pr[1,1], 0, 1)
  #with newdata
  nd <- data.frame(x1=c(0,1))
  pr <- predict(fit_na, "state", newdata=nd)
  expect_equal(dim(pr), c(2,4))
  expect_between(pr[1,1], 0, 15)
})

test_that("ubmsFitPcount sim_z method works",{
  set.seed(123)
  samples <- get_samples(fit, 5)
  zz <- sim_z(fit, samples, re.form=NULL)
  expect_is(zz, "matrix")
  expect_equal(dim(zz), c(length(samples), 10))
  expect_between(mean(zz), 0, 10)
  set.seed(123)
  pz <- posterior_predict(fit, "z", draws=5)
  expect_equivalent(zz, pz)
})

test_that("ubmsFitPcount sim_y method works",{
  set.seed(123)
  samples <- get_samples(fit, 5)
  yy <- sim_y(fit, samples, re.form=NULL)
  expect_is(yy, "matrix")
  expect_equal(dim(yy), c(length(samples), 10*obsNum(umf)))
  set.seed(123)
  py <- posterior_predict(fit, "y", draws=5)
  expect_equivalent(yy, py)
})

test_that("Posterior sim methods for ubmsFitPcount work with NAs",{
  zna <- posterior_predict(fit_na, "z", draws=3)
  expect_equal(dim(zna), c(3,10))
  expect_true(all(is.na(zna[,1])))
  yna <- posterior_predict(fit_na, "y", draws=3)
  expect_equal(dim(yna), c(3, 10*obsNum(umf2)))
  expect_equal(sum(is.na(yna[1,])), 5)
  expect_equal(sum(is.na(yna[2,])), 5)
})

test_that("Posterior linear pred methods work for ubmsFitPcount",{
  set.seed(123)
  samples <- get_samples(fit, 3)
  lp1 <- sim_lp(fit, "state", transform=TRUE, samples=samples,
                newdata=NULL, re.form=NULL)
  expect_equal(dim(lp1), c(length(samples), 10))
  set.seed(123)
  pl <- posterior_linpred(fit, draws=3, submodel="state")
})

test_that("Fitted/residual methods work with ubmsFitPcount",{
  ubms_fitted <- methods::getMethod("fitted", "ubmsFit")
  ubms_residuals <- methods::getMethod("residuals", "ubmsFit")
  ubms_plot <- methods::getMethod("plot", "ubmsFit")

  ft <- ubms_fitted(fit, "state", draws=5)
  ft2 <- ubms_fitted(fit, "det", draws=5)
  expect_equal(dim(ft), c(5, 10))
  expect_equal(dim(ft2), c(5, 10*obsNum(umf)))

  res <- ubms_residuals(fit, "state", draws=5)
  res2 <- ubms_residuals(fit, "det", draws=5)
  expect_equal(dim(res), c(5, 10))
  expect_equal(dim(res2), c(5, 10*obsNum(umf)))

  pdf(NULL)
  rp <- plot_residuals(fit, "state")
  rp2 <- plot_residuals(fit, "det")
  rp3 <- ubms_plot(fit)
  mp <- plot_marginal(fit, "state")
  dev.off()

  expect_is(rp, "gg")
  expect_is(rp2, "gg")
  expect_is(rp3, "gtable")
  expect_is(mp, "gg")
})

test_that("pcount spatial works", {
  skip_on_cran()
  umf2 <- umf
  umf2@siteCovs$x <- runif(numSites(umf2), 0, 10)
  umf2@siteCovs$y <- runif(numSites(umf2), 0, 10)
  fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~1~x1+RSR(x,y,1),
                umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
  expect_is(fit_spat@submodels@submodels$state, "ubmsSubmodelSpatial")
  expect_equal(names(coef(fit_spat))[3], "state[RSR [tau]]")

  ps <- plot_spatial(fit_spat)
  expect_is(ps, "gg")

  # With offsets
  umf2@siteCovs$area <- runif(numSites(umf2), 0, 1)
  fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~1~x1+offset(area) + RSR(x,y,1),
                umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
  expect_is(fit_spat, "ubmsFit")
  fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~offset(area)~x1+ RSR(x,y,1),
                umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
  expect_is(fit_spat, "ubmsFit")
})

Try the ubms package in your browser

Any scripts or data that you put into this service are public.

ubms documentation built on Oct. 1, 2024, 9:06 a.m.