Nothing
context("stan_pcount function and methods")
skip_on_cran()
#Simulate dataset
set.seed(123)
M <- 50
J <- 5
beta <- c(1, 0.5, 0.2, -0.4)
sc <- data.frame(x1=rnorm(M), x2=sample(letters[1:26],M,replace=T),
stringsAsFactors=TRUE)
oc <- data.frame(x3=rnorm(M*J))
lambda <- exp(beta[1] + beta[2]*sc$x1) #+ rx2[rx_idx])
N <- rpois(M, lambda)
p <- plogis(beta[3] + beta[4]*oc$x3)
y <- matrix(NA, M, J)
idx <- 1
for (i in 1:M){
y[i,] <- rbinom(J, N[i], p[idx:(idx+J-1)])
idx <- idx + J
}
umf <- unmarkedFramePCount(y=y,siteCovs=sc, obsCovs=oc)
umf2 <- umf
umf2@y[1,] <- NA
umf2@y[2,1] <- NA
good_fit <- TRUE
tryCatch({
fit <- suppressWarnings(stan_pcount(~x3~x1, umf[1:10,], K=15,
chains=2, iter=100, refresh=0))
fit_na <- suppressWarnings(stan_pcount(~x3~x1, umf2[1:10,], K=15,
chains=2, iter=100, refresh=0))
}, error=function(e){
good_fit <<- FALSE
})
skip_if(!good_fit, "Test setup failed")
test_that("stan_pcount output structure is correct",{
expect_is(fit, "ubmsFitPcount")
expect_is(fit, "ubmsFitAbun")
expect_equal(nsamples(fit), 100)
})
test_that("stan_pcount produces accurate results",{
skip_on_cran()
skip_on_ci()
skip_on_covr()
set.seed(123)
fit_long <- suppressWarnings(stan_pcount(~x3~x1, umf, K=15, chains=2,
iter=300, refresh=0))
fit_unm <- pcount(~x3~x1, umf, K=15)
#similar to truth
expect_RMSE(coef(fit_long), beta, 0.2)
#similar to unmarked
expect_RMSE(coef(fit_long), coef(fit_unm), 0.05)
#similar to previous known values
expect_RMSE(coef(fit_long), c(0.96637,0.54445,0.02651,-0.3631), 0.05)
})
test_that("offsets work with stan_pcount",{
skip_on_cran()
skip_on_ci()
skip_on_covr()
set.seed(123)
umf@siteCovs$area <- runif(numSites(umf), 0, 1)
fit_long <- suppressWarnings(stan_pcount(~x3~x1+offset(log(area)), umf, K=15, chains=2,
iter=300, refresh=0))
fit_unm <- pcount(~x3~x1+offset(log(area)), umf, K=15)
expect_RMSE(coef(fit_long), coef(fit_unm), 0.05)
pr_stan <- predict(fit_long, "state")
pr_unm <- predict(fit_unm, "state")
expect_RMSE(pr_stan$Predicted, pr_unm$Predicted, 0.1)
})
test_that("stan_pcount handles NA values",{
expect_true(is.numeric(coef(fit_na)))
})
test_that("extract_log_lik method works",{
ll <- extract_log_lik(fit)
expect_is(ll, "matrix")
expect_equal(dim(ll), c(100/2 * 2, numSites(fit@data)))
expect_between(sum(ll), -7000, -6000)
})
test_that("ubmsFitPcount gof method works",{
set.seed(123)
g <- gof(fit, draws=5, quiet=TRUE)
expect_between(g@estimate, 30, 100)
gof_plot_method <- methods::getMethod("plot", "ubmsGOF")
pdf(NULL)
pg <- gof_plot_method(g)
dev.off()
expect_is(pg, "gg")
})
test_that("ubmsFitPcount gof method works with missing values",{
set.seed(123)
g <- gof(fit_na, draws=5, quiet=TRUE)
expect_is(g, "ubmsGOF")
})
test_that("ubmsFitPcount predict method works",{
pr <- predict(fit_na, "state")
expect_is(pr, "data.frame")
expect_equal(dim(pr), c(10, 4))
expect_between(pr[1,1], 0, 15)
pr <- predict(fit_na, "det")
expect_equal(dim(pr), c(10*obsNum(umf2),4))
expect_between(pr[1,1], 0, 1)
#with newdata
nd <- data.frame(x1=c(0,1))
pr <- predict(fit_na, "state", newdata=nd)
expect_equal(dim(pr), c(2,4))
expect_between(pr[1,1], 0, 15)
})
test_that("ubmsFitPcount sim_z method works",{
set.seed(123)
samples <- get_samples(fit, 5)
zz <- sim_z(fit, samples, re.form=NULL)
expect_is(zz, "matrix")
expect_equal(dim(zz), c(length(samples), 10))
expect_between(mean(zz), 0, 10)
set.seed(123)
pz <- posterior_predict(fit, "z", draws=5)
expect_equivalent(zz, pz)
})
test_that("ubmsFitPcount sim_y method works",{
set.seed(123)
samples <- get_samples(fit, 5)
yy <- sim_y(fit, samples, re.form=NULL)
expect_is(yy, "matrix")
expect_equal(dim(yy), c(length(samples), 10*obsNum(umf)))
set.seed(123)
py <- posterior_predict(fit, "y", draws=5)
expect_equivalent(yy, py)
})
test_that("Posterior sim methods for ubmsFitPcount work with NAs",{
zna <- posterior_predict(fit_na, "z", draws=3)
expect_equal(dim(zna), c(3,10))
expect_true(all(is.na(zna[,1])))
yna <- posterior_predict(fit_na, "y", draws=3)
expect_equal(dim(yna), c(3, 10*obsNum(umf2)))
expect_equal(sum(is.na(yna[1,])), 5)
expect_equal(sum(is.na(yna[2,])), 5)
})
test_that("Posterior linear pred methods work for ubmsFitPcount",{
set.seed(123)
samples <- get_samples(fit, 3)
lp1 <- sim_lp(fit, "state", transform=TRUE, samples=samples,
newdata=NULL, re.form=NULL)
expect_equal(dim(lp1), c(length(samples), 10))
set.seed(123)
pl <- posterior_linpred(fit, draws=3, submodel="state")
})
test_that("Fitted/residual methods work with ubmsFitPcount",{
ubms_fitted <- methods::getMethod("fitted", "ubmsFit")
ubms_residuals <- methods::getMethod("residuals", "ubmsFit")
ubms_plot <- methods::getMethod("plot", "ubmsFit")
ft <- ubms_fitted(fit, "state", draws=5)
ft2 <- ubms_fitted(fit, "det", draws=5)
expect_equal(dim(ft), c(5, 10))
expect_equal(dim(ft2), c(5, 10*obsNum(umf)))
res <- ubms_residuals(fit, "state", draws=5)
res2 <- ubms_residuals(fit, "det", draws=5)
expect_equal(dim(res), c(5, 10))
expect_equal(dim(res2), c(5, 10*obsNum(umf)))
pdf(NULL)
rp <- plot_residuals(fit, "state")
rp2 <- plot_residuals(fit, "det")
rp3 <- ubms_plot(fit)
mp <- plot_marginal(fit, "state")
dev.off()
expect_is(rp, "gg")
expect_is(rp2, "gg")
expect_is(rp3, "gtable")
expect_is(mp, "gg")
})
test_that("pcount spatial works", {
skip_on_cran()
umf2 <- umf
umf2@siteCovs$x <- runif(numSites(umf2), 0, 10)
umf2@siteCovs$y <- runif(numSites(umf2), 0, 10)
fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~1~x1+RSR(x,y,1),
umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
expect_is(fit_spat@submodels@submodels$state, "ubmsSubmodelSpatial")
expect_equal(names(coef(fit_spat))[3], "state[RSR [tau]]")
ps <- plot_spatial(fit_spat)
expect_is(ps, "gg")
# With offsets
umf2@siteCovs$area <- runif(numSites(umf2), 0, 1)
fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~1~x1+offset(area) + RSR(x,y,1),
umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
expect_is(fit_spat, "ubmsFit")
fit_spat <- suppressMessages(suppressWarnings(stan_pcount(~offset(area)~x1+ RSR(x,y,1),
umf2[1:20,], K=15, chains=2, iter=100, refresh=0)))
expect_is(fit_spat, "ubmsFit")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.