Description Usage Arguments Details Value Author(s) References Examples
Estimate the joint size-shape-orientation distribution of spheroids
1 | em.spheroids(P, F, maxIt, nCores = getOption("par.unfoldr", 2L))
|
P |
coefficient array |
F |
input histogram |
maxIt |
maximum number of EM iterations |
nCores |
number of cpu cores to be used |
Given an array of coefficients P, see coefficientMatrixSpheroids and an input histogram
F of measured planar characteristics of section profiles, the function estimates the spatial joint
size-shape-orientation distribution of the corresponding spheroids in 3D by a discretized version of the
Expectation Maximization (EM) algorithm. A number of cpu cores can be set by the option 'par.unfoldr'
for parallel computations. The function is also internally called by unfold in case of spheroids.
trivariate histogram
M. Baaske
Bene\check{\textrm{s}}, V. and Rataj, J. Stochastic Geometry: Selected Topics Kluwer Academic Publishers, Boston, 2004
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Comment: Trivariate unfolding of spheroid distribution
## set number of cpu cores (optional)
options(par.unfoldr=2L)
## Intensity: mean number of spheroids per unit volume
lam <- 1000
## simulation parameters
theta <- list("size"=list("meanlog"=-2.5,"sdlog"=0.5),
"shape"=list(0.5),"orientation"=list("kappa"=2))
## simualtion
set.seed(1234)
S <- simPoissonSystem(theta,lam,size="rlnorm",
orientation="rbetaiso",box=list(c(0,5)),type="prolate",pl=1)
## unfolding
sp <- verticalSection(S,2.5)
ret <- unfold(sp,c(7,6,5),kap=1.25)
cat("Intensities: ", sum(ret$N_V)/25, "vs.",lam,"\n")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.