Nothing
#' Sample Moments
#'
#' \code{moments} returns the sample moments of a data vector/matrix
#'
#' This function computes the sample moments for a data vector, matrix or list (sample mean, sample variance, sample skewness and sample kurtosis).
#' For a vector input the function returns a single value for each sample moment of the data. For a matrix or list input the function treats each
#' column/element as a data vector and returns a matrix of values for the sample moments of each of these datasets. The function can compute
#' different types of skewness and kurtosis statistics using the \code{skew.type}, \code{kurt.type} and \code{kurt.excess} inputs. (For details
#' on the different types of skewness and kurtosis statistics, see Joanes and Gill 1998.)
#'
#' @param x A data vector/matrix/list
#' @param skew.type The type of kurtosis statistic used ('Moment', 'Fisher Pearson' or 'Adjusted Fisher Pearson')
#' @param kurt.type The type of kurtosis statistic used ('Moment', 'Fisher Pearson' or 'Adjusted Fisher Pearson')
#' @param kurt.excess Logical value; if \code{TRUE} the function gives the excess kurtosis (instead of raw kurtosis)
#' @param na.rm Logical value; if \code{TRUE} the function removes \code{NA} values
#' @param include.sd Logical value; if \code{TRUE} the output includes a column for the sample standard deviation (if needed)
#' @return A data frame containing the sample moments of the data vector/matrix
#'
#' @examples
#' #Create some subgroups of mock data and a pooled dataset
#' set.seed(1)
#' N <- c(28, 44, 51)
#' SUB1 <- rnorm(N[1])
#' SUB2 <- rnorm(N[2])
#' SUB3 <- rnorm(N[3])
#' DATA <- list(Subgroup1 = SUB1, Subgroup2 = SUB2, Subgroup3 = SUB3)
#' POOL <- c(SUB1, SUB2, SUB3)
#'
#' #Compute sample moments for subgroups and pooled data
#' MOMENTS <- moments(DATA)
#' POOLMOM <- moments(POOL)
#'
#' #Compute pooled moments via sample decomposition
#' sample.decomp(moments = MOMENTS)
moments <- function(x, skew.type = NULL, kurt.type = NULL, kurt.excess = FALSE, na.rm = TRUE, include.sd = FALSE) {
#Extract the data name
DATANAME <- deparse(substitute(x))
#Check input x
if (is.list(x)) {
m <- length(x)
for (i in 1:m) {
if (!is.numeric(x[[i]])) { stop(paste0('Error: Element ', i, ' of input list x should be numeric')) } } }
if (!is.list(x)) {
if (!is.numeric(x)) { stop('Error: Input x should be numeric') } }
#Check inputs skew.type and kurt.type
#Types are as follows:
# b = Moment (Minitab)
# g = Fisher Pearson (moments package in R, STATA)
# G = Adjusted Fisher Pearson (Excel, SPSS, SAS)
TYPES <- c('Moment', 'Fisher Pearson', 'Adjusted Fisher Pearson', 'b', 'g', 'G', 'Minitab', 'Excel', 'SPSS', 'SAS', 'Stata')
if (missing(skew.type)) { skew.type <- 'Fisher Pearson' }
if (missing(kurt.type)) { kurt.type <- 'Fisher Pearson' }
if (!(skew.type %in% TYPES)) { stop('Error: Input skew.type not recognised') }
if (!(kurt.type %in% TYPES)) { stop('Error: Input kurt.type not recognised') }
#Check input kurt.excess
if (!is.vector(kurt.excess)) { stop('Error: Input kurt.excess should be a single logical value') }
if (!is.logical(kurt.excess)) { stop('Error: Input kurt.excess should be a single logical value') }
if (length(kurt.excess) != 1) { stop('Error: Input kurt.excess should be a single logical value') }
#Check input na.rm
if (!is.vector(na.rm)) { stop('Error: Input na.rm should be a single logical value') }
if (!is.logical(na.rm)) { stop('Error: Input na.rm should be a single logical value') }
if (length(na.rm) != 1) { stop('Error: Input na.rm should be a single logical value') }
#Check input include.sd
if (!is.vector(include.sd)) { stop('Error: Input include.sd should be a single logical value') }
if (!is.logical(include.sd)) { stop('Error: Input include.sd should be a single logical value') }
if (length(include.sd) != 1) { stop('Error: Input include.sd should be a single logical value') }
#Set skew and kurt adjustments
#Default type with no adjustment is 'Fisher Pearson'
skew.adj <- function(n) {
A <- 1
if (skew.type %in% c('Moment', 'b', 'Minitab')) {
A <- (n/(n-1))^(3/2) }
if (skew.type %in% c('Adjusted Fisher Pearson', 'G', 'Excel', 'SPSS', 'SAS')) {
A <- (n^2)/((n-1)*(n-2)) }
A }
kurt.adj <- function(n) {
B <- 1
if (kurt.type %in% c('Moment', 'b', 'Minitab')) {
B <- (n/(n-1))^2 }
if (kurt.type %in% c('Adjusted Fisher Pearson', 'G', 'Excel', 'SPSS', 'SAS')) {
B <- (n+1)*n^2/((n-1)*(n-2)*(n-3)) }
B }
excess.adj <- function(n) {
C <- -3*kurt.excess
if (kurt.type %in% c('Adjusted Fisher Pearson', 'G', 'Excel', 'SPSS', 'SAS')) {
C <- -3*kurt.excess*(n-1)^2/((n-2)*(n-3)) }
C }
#Convert data to list
if (is.list(x)) {
DATA <- x
NAMES <- names(x) }
if ((!is.list(x))&(is.vector(x))) {
DATA <- lapply(1, function(i) x)
NAMES <- DATANAME
names(DATA) <- NAMES }
if ((!is.list(x))&(is.matrix(x))) {
DATA <- lapply(seq_len(ncol(x)), function(i) x[,i])
NAMES <- colnames(x)
names(DATA) <- NAMES }
#Create output data frame
m <- length(DATA)
if (include.sd) {
OUT <- data.frame(n = rep(0, m), sample.mean = rep(0, m), sample.sd = rep(0, m), sample.var = rep(0, m),
sample.skew = rep(0, m), sample.kurt = rep(0, m), NAs = rep(0, m)) } else {
OUT <- data.frame(n = rep(0, m), sample.mean = rep(0, m), sample.var = rep(0, m),
sample.skew = rep(0, m), sample.kurt = rep(0, m), NAs = rep(0, m)) }
if (m == 1) { rownames(OUT) <- DATANAME } else {
if (is.null(NAMES)) { rownames(OUT) <- paste0(DATANAME, sprintf('[%s]', 1:m)) } else { rownames(OUT) <- NAMES } }
class(OUT) <- c('moments', 'data.frame')
attr(OUT, 'skew.type') <- skew.type
attr(OUT, 'kurt.type') <- kurt.type
attr(OUT, 'kurt.excess') <- kurt.excess
#Compute the sample moments
for (i in 1:m) {
NAS <- sum(is.na(DATA[[i]]))
if (na.rm) { xx <- DATA[[i]][!is.na(DATA[[i]])] } else { xx <- DATA[[i]] }
n <- length(xx)
MM <- rep(0, n)
SS <- rep(0, n)
SC <- rep(0, n)
SQ <- rep(0, n)
MM[1] <- xx[1]
if (n > 1) {
for (k in 2:n) {
MM[k] <- ((k-1)*MM[k-1] + xx[k])/k
DD <- MM[k-1] - xx[k]
SS[k] <- SS[k-1] + ((k-1)/k)*DD^2
SC[k] <- SC[k-1] + ((3*SS[k-1])/k)*DD - ((k-1)*(k-2)/k^2)*DD^3
SQ[k] <- SQ[k-1] + ((4*SC[k-1])/k)*DD + ((6*SS[k-1])/k^2)*DD^2 + ((k-1)*(1+(k-1)^3)/k^4)*DD^4 } }
MM <- MM[n]
SS <- SS[n]
SC <- SC[n]
SQ <- SQ[n]
sample.mean <- MM
sample.var <- ifelse(n >= 2, SS/(n-1), NA)
sample.skew <- ifelse(n >= 2, skew.adj(n)*sqrt(n)*SC/SS^(3/2), NA)
sample.kurt <- ifelse(n >= 2, kurt.adj(n)*n*SQ/SS^2 + kurt.excess, NA)
#Add to output
OUT$n[i] <- n
OUT$sample.mean[i] <- sample.mean
if (include.sd) { OUT$sample.sd[i] <- sqrt(sample.var) }
OUT$sample.var[i] <- sample.var
OUT$sample.skew[i] <- sample.skew
OUT$sample.kurt[i] <- sample.kurt
OUT$NAs[i] <- NAS }
#Give output
OUT }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.