Nothing
#' Ranking by Pairwise Comparison (RPC) for multi-label Classification
#'
#' Create a RPC model for multilabel classification.
#'
#' RPC is a simple transformation method that uses pairwise classification to
#' predict multi-label data. This is based on the one-versus-one approach to
#' build a specific model for each label combination.
#'
#' @family Transformation methods
#' @family Pairwise methods
#' @param mdata A mldr dataset used to train the binary models.
#' @param base.algorithm A string with the name of the base algorithm. (Default:
#' \code{options("utiml.base.algorithm", "SVM")})
#' @param ... Others arguments passed to the base algorithm for all subproblems
#' @param cores The number of cores to parallelize the training. Values higher
#' than 1 require the \pkg{parallel} package. (Default:
#' \code{options("utiml.cores", 1)})
#' @param seed An optional integer used to set the seed. This is useful when
#' the method is run in parallel. (Default: \code{options("utiml.seed", NA)})
#' @return An object of class \code{RPCmodel} containing the set of fitted
#' models, including:
#' \describe{
#' \item{labels}{A vector with the label names.}
#' \item{models}{A list of the generated models, named by the label names.}
#' }
#' @references
#' Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008).
#' Label ranking by learning pairwise preferences. Artificial Intelligence,
#' 172(16-17), 1897-1916.
#' @export
#'
#' @examples
#' model <- rpc(toyml, "RANDOM")
#' pred <- predict(model, toyml)
rpc <- function(mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"), ...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)) {
# Validations
if (!is(mdata, "mldr")) {
stop("First argument must be an mldr object")
}
if (cores < 1) {
stop("Cores must be a positive value")
}
# RPC Model class
rpcmodel <- list(labels = rownames(mdata$labels), call = match.call())
# Create models
labels <- utils::combn(rpcmodel$labels, 2, simplify=FALSE)
names(labels) <- unlist(lapply(labels, paste, collapse=','))
rpcmodel$models <- utiml_lapply(labels, function (pairwise) {
utiml_create_model(
utiml_prepare_data(
utiml_create_pairwise_data(mdata, pairwise[1], pairwise[2]),
"mldRPC", mdata$name, "rpc", base.algorithm,
label1=pairwise[1], label2=pairwise[2]
), ...
)
}, cores, seed)
class(rpcmodel) <- "RPCmodel"
rpcmodel
}
#' Predict Method for RPC
#'
#' This function predicts values based upon a model trained by
#' \code{\link{rpc}}.
#'
#' @param object Object of class '\code{RPCmodel}'.
#' @param newdata An object containing the new input data. This must be a
#' matrix, data.frame or a mldr object.
#' @param probability Logical indicating whether class probabilities should be
#' returned. (Default: \code{getOption("utiml.use.probs", TRUE)})
#' @param ... Others arguments passed to the base algorithm prediction for all
#' subproblems.
#' @param cores The number of cores to parallelize the training. Values higher
#' than 1 require the \pkg{parallel} package. (Default:
#' \code{options("utiml.cores", 1)})
#' @param seed An optional integer used to set the seed. This is useful when
#' the method is run in parallel. (Default: \code{options("utiml.seed", NA)})
#' @return An object of type mlresult, based on the parameter probability.
#' @seealso \code{\link[=br]{Binary Relevance (BR)}}
#' @export
#'
#' @examples
#' model <- rpc(toyml, "RANDOM")
#' pred <- predict(model, toyml)
predict.RPCmodel <- function(object, newdata,
probability = getOption("utiml.use.probs", TRUE),
..., cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)) {
# Validations
if (!is(object, "RPCmodel")) {
stop("First argument must be an RPCmodel object")
}
if (cores < 1) {
stop("Cores must be a positive value")
}
# Create models
newdata <- utiml_newdata(newdata)
labels <- utiml_rename(object$labels)
predictions <- utiml_lapply(object$models, utiml_predict_binary_model,
newdata = newdata, ..., cores, seed)
# Compute votes
labels <- utils::combn(object$labels, 2, simplify=FALSE)
votes <- matrix(0, ncol=length(object$labels), nrow=nrow(newdata),
dimnames = list(rownames(newdata), object$labels))
for (i in seq(labels)) {
votes[,labels[[i]]] <- votes[,labels[[i]]] +
cbind(predictions[[i]]$bipartition, 1 - predictions[[i]]$bipartition)
}
as.mlresult(votes / length(object$labels), probability)
}
#' Print RPC model
#' @param x The br model
#' @param ... ignored
#'
#' @return No return value, called for print model's detail
#'
#' @export
print.RPCmodel <- function(x, ...) {
cat("RPC Model\n\nCall:\n")
print(x$call)
cat("\n", length(x$models), " pairwise models\n", sep='')}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.