Nothing
`estimateR.default` <-
function (x, ...)
{
gradF <- function(a, i) {
.expr4 <- sum(i * a)
.expr7 <- 1 - a[1]/(1 - sum(i * a))
.expr8 <- 1/.expr7
.expr10 <- sum(a)
.expr12 <- sum(i * (i - 1) * a)
.expr13 <- sum(a) * sum(i * (i - 1) * a)
.expr14 <- .expr7 * .expr4
.expr15 <- .expr4 - 1
.expr16 <- .expr14 * .expr15
.expr18 <- .expr13/.expr16 - 1
.expr20 <- sum(a) + a[1] * .expr18
.expr23 <- (1 - sum(i * a))^2
.expr25 <- 1/(1 - sum(i * a)) + a[1]/(1 - sum(i * a))^2
.expr26 <- .expr7^2
.expr35 <- .expr16^2
Grad <- a[1] * i/(.expr23 * .expr26) * .expr20 + .expr8 *
(1 + a[1] * ((.expr12 + (.expr10 * i * (i - 1)))/.expr16 -
.expr13 * ((.expr7 * i - (a[1] * i/.expr23) *
.expr4) * .expr15 + .expr14 * i)/.expr35))
Grad[1] <- .expr25/.expr26 * .expr20 + .expr8 * (1 +
(.expr18 + a[1] * (.expr12/.expr16 - .expr13 * ((.expr7 -
.expr25 * .expr4) * .expr15 + .expr14)/.expr35)))
Grad
}
## we need integers
if (!identical(all.equal(x, round(x)), TRUE))
stop("function accepts only integers (counts)")
## and they must be exact
if (!is.integer(x))
x <- round(x)
X <- x[x > 0]
## N <- sum(X) # do NOT use small-sample correction
SSC <- 1 # (N-1)/N # do NOT use small-sample correction
T.X <- table(X)
S.obs <- length(X)
S.rare <- sum(T.X[as.numeric(names(T.X)) <= 10])
S.abund <- sum(T.X[as.numeric(names(T.X)) > 10])
N.rare <- sum(X[X < 11])
i <- 1:10
COUNT <- function(i, counts) {
length(counts[counts == i])
}
a <- sapply(i, COUNT, X)
## EstimateS uses basic Chao only if a[2] > 0, and switches to
## bias-corrected version only if a[2] == 0. However, we always
## use bias-corrected form. The switchin code is commented out so
## that it is easy to put back.
##if (a[2] > 0)
## S.Chao1 <- S.obs + SSC * a[1]^2/2/a[2]
##else if (a[1] > 0)
##
S.Chao1 <- S.obs + SSC * a[1]*(a[1]-1) / (a[2]+1)/2
##else
## S.Chao1 <- S.obs
Deriv.Ch1 <- gradF(a, i)
## The commonly used variance estimator is wrong for bias-reduced
## Chao estimate. It is based on the variance estimator of basic
## Chao estimate, but replaces the basic terms with corresponding
## terms in the bias-reduced estimate. The following is directly
## derived from the bias-reduced estimate.
## The commonly used one (for instance, in EstimateS):
##sd.Chao1 <-
## sqrt(SSC*(a[1]*(a[1]-1)/2/(a[2]+1) +
## SSC*(a[1]*(2*a[1]-1)^2/4/(a[2]+1)^2 +
## a[1]^2*a[2]*(a[1]-1)^2/4/(a[2]+1)^4)))
sd.Chao1 <- (a[1]*((-a[2]^2+(-2*a[2]-a[1])*a[1])*a[1] +
(-1+(-4+(-5-2*a[2])*a[2])*a[2] +
(-2+(-1+(2*a[2]+2)*a[2])*a[2] +
(4+(6+4*a[2])*a[2] + a[1]*a[2])*a[1])*a[1])*S.Chao1))/
4/(a[2]+1)^4/S.Chao1
sd.Chao1 <- sqrt(sd.Chao1)
C.ace <- 1 - a[1]/N.rare
i <- seq_along(a)
thing <- i * (i - 1) * a
Gam <- sum(thing) * S.rare/(C.ace * N.rare * (N.rare - 1)) -
1
S.ACE <- S.abund + S.rare/C.ace + max(Gam, 0) * a[1]/C.ace
sd.ACE <- sqrt(sum(Deriv.Ch1 %*% t(Deriv.Ch1) * (diag(a) -
a %*% t(a)/S.ACE)))
out <- list(S.obs = S.obs, S.chao1 = S.Chao1, se.chao1 = sd.Chao1,
S.ACE = S.ACE, se.ACE = sd.ACE)
out <- unlist(out)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.