R/predict.rda.R

Defines functions `predict.dbrda`

### predict.rda handles rda plus distance-based capscale and
### dbrda. Distance-based methods have some limitations:
###
### - type = "response" returns dissimilarities (and ignores imaginary dims)
### - Euclidean distances type = "working" give type = "response"
### - there are no meaningful species scores
### - WA scores with newdata cannot be calculated in capscale.
### - only type = "response", "working" and "lc" work with dbrda
### - only type = "lc" can be used with newdata with dbrda

`predict.rda` <-
    function (object, newdata, type = c("response", "wa", "sp", "lc", "working"),
              rank = "full", model = c("CCA", "CA"), scaling = "none",
              correlation = FALSE, const, ...)
{
    ## not vegan rda, but intended for klaR:::predict.rda?
    if (!("CA" %in% names(object)))
        stop(gettextf("%s is not a vegan rda object",
                      sQuote(deparse(substitute(object)))))
    type <- match.arg(type)
    model <- match.arg(model)
    if (model == "CCA" && is.null(object$CCA))
        model <- "CA"
    take <- object[[model]]$rank
    if (take == 0)
        stop(gettextf("model '%s' has rank 0", model))
    if (rank != "full")
        take <- min(take, rank)

    if (is.null(object$Ybar))
        stop("update() your outdated result object")
    cent <- attr(object$Ybar, "scaled:center")
    scal <- attr(object$Ybar, "scaled:scale")
    scaled.PCA <- !is.null(scal)

    nr <- nobs(object) - 1
    u <- object[[model]]$u[, 1:take, drop = FALSE]
    w <- object[[model]]$wa[, 1:take, drop = FALSE]
    if (is.null(w))
        w <- u
    v <- object[[model]]$v[, 1:take, drop = FALSE]

    ## process scaling arg, scaling used later so needs to be a numeric
    scaling <- scalingType(scaling = scaling, correlation = correlation)
    if (type %in% c("wa","sp","lc")) {
        slam <- sqrt(object[[model]]$eig[1:take]/object$tot.chi)
        if (scaling && missing(const))
            const <- sqrt(sqrt((nobs(object)-1) * object$tot.chi))
    } else {
        slam <- diag(sqrt(object[[model]]$eig[1:take]), nrow = take)
    }

    if (type %in% c("response", "working")) {
        if (!missing(newdata)) {
            u <- predict(object, type = if(model == "CCA") "lc" else "wa",
                         newdata = newdata, rank = take)
        }
        if (inherits(object, "capscale")) {
            if (take > 0) {
                out <- u %*% slam
                if (type == "response") {
                    out <- dist(out)
                }
            }
        } else {
            if (take > 0)
                out <- u %*% slam %*% t(v)
            else {
                out <- matrix(0, nrow = nrow(u), ncol = nrow(v))
                rownames(out) <- rownames(u)
                colnames(out) <- rownames(v)
            }
            if (type == "response") {
                if (!is.null(scal))
                    out <- sweep(out, 2, scal, "*")
                out <- out * sqrt(nr)
                out <- sweep(out, 2, cent, "+")
            }
        }
    }
    else if (type == "lc") {
        if (model == "CA")
            stop("'lc' scores not available for unconstrained ordination")
        if (!missing(newdata)) {
            if (is.null(object$terminfo))
                E <- as.matrix(newdata)
            else {
                d <- ordiParseFormula(formula(object), newdata,
                                      object$terminfo$xlev)
                E <- cbind(d$Z, d$Y)
            }
            Q <- object[[model]]$QR
            p1 <- Q$pivot[1:Q$rank]
            E <- sweep(E, 2, c(object$pCCA$envcentre, object$CCA$envcentre),
                       "-")
            u <- E[, p1, drop = FALSE] %*% coef(object)[p1, ,
                         drop = FALSE]
            u <- u[, 1:take, drop = FALSE]
        }
        out <- u
        if (scaling) {   # implicit coercion 0 == FALSE, other == TRUE
            lam <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
            out <- const * sweep(out, 2, lam, "*")
        }
    }
    else if (type == "wa") {
        if (!missing(newdata)) {
            if (inherits(object, "capscale"))
                stop(gettextf("'wa' scores not available in %s with 'newdata'",
                     object$method))
            if (!is.null(object$pCCA))
                stop("no 'wa' scores available (yet) in partial RDA")
            nm <- rownames(v)
            if (!is.null(nm)) {
                if (!all(nm %in% colnames(newdata)))
                    stop("'newdata' does not have named columns matching one or more the original columns")
                newdata <-  newdata[, nm, drop = FALSE]
            }
            Xbar <- as.matrix(newdata)
            Xbar <- sweep(Xbar, 2, cent, "-")
            Xbar <- Xbar / sqrt(nr)
            if (!is.null(scal)) {
                nz <- scal > 0
                Xbar[,nz] <- sweep(Xbar[,nz], 2, scal[nz], "/")
            }
            w <- Xbar %*% v
            w <- sweep(w, 2, slam, "/") / sqrt(object$tot.chi)
        }
        out <- w
        if (scaling) {   # implicit coercion 0 == FALSE, other == TRUE
            lam <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
            out <- const * sweep(out, 2, lam, "*")
        }
    }
    else if (type == "sp") {
        if (inherits(object, "capscale"))
            warning("'sp' scores may be meaningless in 'capscale'")
        if (!missing(newdata)) {
            nm <- rownames(u)
            if (!is.null(nm)) {
                if (!all(nm %in% rownames(newdata)))
                    stop("'newdata' does not have named rows matching one or more of the original rows")
                newdata <- newdata[nm, , drop = FALSE]
            }
            Xbar <- as.matrix(newdata)
            Xbar <- scale(Xbar, center = TRUE, scale = scaled.PCA)
            Xbar <- Xbar/sqrt(nr)
            if (!is.null(object$pCCA))
                Xbar <- qr.resid(object$pCCA$QR, Xbar)
            v <- t(Xbar) %*% u
            v <- sweep(v, 2, slam, "/") / sqrt(object$tot.chi)
        }
        out <- v
        if (scaling) {   # implicit coercion 0 == FALSE, other == TRUE
            lam <- list(1, slam, sqrt(slam))[[abs(scaling)]]
            out <- const * sweep(out, 2, lam, "*")
            if (scaling < 0) { # correlation=TRUE
                out <- out / object$colsum
                out <- out * sqrt(object$tot.chi / (nobs(object)-1))
            }
        }
    }
    out
}

### distance-based RDA benefits from its own predict

`predict.dbrda` <-
    function(object, newdata, type = c("response", "lc", "wa", "working"),
             rank = "full", model = c("CCA", "CA"), scaling = "none",
             const, ...)
{
    type <- match.arg(type)
    model <- match.arg(model)
    ZAP <- sqrt(.Machine$double.eps)
    if (type %in% c("response", "working")) {
        if(rank == "full" && missing(newdata)) {
            out <- ordiYbar(object, model)
        } else {
            lambda <- object[[model]]$eig
            if (!missing(newdata)) {
                u <- predict(object, newdata = newdata, type = "lc",
                             rank = rank)
            } else {
                u <- object[[model]]$u
                if (!is.null(object[[model]]$imaginary.u))
                    u <- cbind(u, object[[model]]$imaginary.u)
            }
            if (rank != "full") {
                k <- seq_len(min(rank, ncol(u)))
                u <- u[, k, drop = FALSE]
                lambda <- lambda[k]
            }
            out <- u %*% diag(lambda, nrow=length(lambda)) %*% t(u)
        }
        if (type == "response") {
            dia <- diag(out)
            out <- as.dist(-2*out + outer(dia, dia, "+"))
            out[abs(out) < ZAP] <- 0
            out <- sqrt(out)
        }
    } else if (type %in% c("lc", "wa")) {
        if (model == "CA" && type == "lc")
            stop("'lc' scores are not available for unconstrained ordination")
        if (type == "wa" && !missing(newdata))
            stop("'newdata' is not available for type='wa'")
        if (!missing(newdata)) {
            if (is.null(object$terminfo))
                E <- as.matrix(newdata)
            else {
                d <- ordiParseFormula(formula(object), newdata,
                                      object$terminfo$xlev)
                E <- cbind(d$Z, d$Y)
            }
            E <- sweep(E, 2,
                       c(object$pCCA$envcentre, object$CCA$envcentre), "-")
            p1 <- object[[model]]$QR$pivot[seq_len(object[[model]]$QR$rank)]
            out <- E[, p1, drop = FALSE] %*% coef(object)[p1, , drop =FALSE]
        } else {
            out <- object[[model]]$u
        }
        if (rank != "full") {
            k <- seq_len(min(rank, ncol(out)))
            out <- out[, k, drop=FALSE]
        } else {
            k <- seq_len(ncol(out))
        }
        ## wa can be estimated as ordiYbar(object, "initial") %*% u
        ## %*% diag(1/lambda), but "initial" ordiYbar is not available
        ## and cannot be found from constrained u with predict(...,
        ## type="response", newdata=...) which gives ordYbar(...,
        ## "CCA").
        if (type == "wa" && model == "CCA") { # in model="CA" out has these
            out <- object[[model]]$wa[, k, drop = FALSE]
        }
        scaling <- scalingType(scaling)
        if (scaling) { # scaling="none" is 0 == FALSE
            if (missing(const))
                const <- sqrt(sqrt((nobs(object) - 1) * object$tot.chi))
            slam <- diag(sqrt(object[[model]]$eig[k] / object$tot.chi),
                         nrow = length(k))
            out <- switch(scaling,
                          const * out %*% slam,
                          const * out,
                          const * out %*% sqrt(slam)
                          )
        }
    }
    out
}

Try the vegan package in your browser

Any scripts or data that you put into this service are public.

vegan documentation built on Sept. 11, 2024, 7:57 p.m.