Nothing
`predict.specaccum` <-
function(object, newdata, interpolation = c("linear", "spline"), ...)
{
if (missing(newdata))
out <- object$richness
else {
interpolation <- match.arg(interpolation)
newdata <- drop(as.matrix(newdata))
if (length(dim(newdata)) > 1)
stop("function accepts only one variable as 'newdata'")
## Estimation uses lchoose(), but for predict we need to
## estimates on non-integer sample sizes and therefore we use
## lgamma(). Original "rarefaction" used sample sizes rounded
## to integers, but here we can use non-integer data and hence
## get different results.
if (object$method %in% c("exact", "rarefaction")) {
lg <- function(n, k) {
ifelse(k <= n, lgamma(pmax.int(n, 0) + 1) - lgamma(k+1) -
lgamma(pmax.int(n-k, 0) + 1), -Inf)
}
if (object$method == "exact")
n <- length(object$sites)
else {
n <- sum(object$freq)
newdata <- newdata / length(object$sites) * n
}
ldiv <- lg(n, newdata)
out <- numeric(length(ldiv))
for(i in seq_along(newdata)) {
out[i] <- sum(1 - exp(lg(n-object$freq, newdata[i])
- ldiv[i]))
}
} else if (object$method == "coleman") {
## "coleman" also works on non-integer newdata
n <- length(object$sites)
out <- sapply(newdata,
function(x) sum(1 - (1 - x/n)^object$freq))
} else {
## Other methods do not accept non-integer newdata, but we
## can interpolate
if (interpolation == "linear")
out <- approx(x = object$sites, y = object$richness,
xout = newdata, rule = 1)$y
else
out <- spline(x = object$sites, y = object$richness,
xout = newdata, ...)$y
}
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.