Nothing
### An internal function used in varpart(): Returns only the raw
### Rsquare and the rank of constraints in RDA.
`simpleRDA2` <-
function (Y, X, SS.Y, ...)
{
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, Y)
SS <- sum(Yfit.X^2)
if (missing(SS.Y)) SS.Y <- sum(Y^2)
Rsquare <- SS/SS.Y
R2adj <- RsquareAdj(Rsquare, nrow(Y), Q$rank)
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
### Analogous function, but the input must be Gower double-centred
### dissimilarities 'G = -GowerDblcen(as.matrix(dist(Y)^2))/2'. The
### math is based on McArdle & Anderson, Ecology 82: 290-297 (2001).
`simpleDBRDA` <-
function(G, X, SS.G, ...)
{
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, G)
SS <- sum(diag(Yfit.X))
if (missing(SS.G)) SS.G <- sum(diag(G))
Rsquare <- SS/SS.G
R2adj <- RsquareAdj(Rsquare, nrow(G), Q$rank)
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
### Analogous function for CCA. We initialize data with weighted
### double standaradization, and centre constraints X by row
### weights. The approximation of weighted R-square is found via
### permutations in permat (which must be given).
`simpleCCA` <-
function(Y, X, SS.Y, permat, ...)
{
Y <- initCA(Y)
if(missing(SS.Y)) SS.Y <- sum(Y^2)
w <- attr(Y, "RW")
X <- .Call(do_wcentre, X, w)
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, Y)
SS <- sum(Yfit.X^2)
Rsquare <- SS/SS.Y
## permutation to estimate adjusted R2
meanSS <- mean(sapply(seq_len(nrow(permat)),
function(i) sum(qr.fitted(Q, Y[permat[i,],])^2)))
R2adj <- 1 - ((1 - Rsquare) / (1 - meanSS/SS.Y))
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.