R/pfc.R

Defines functions pfc

## From the ldr package, version 1.3.3
## By Kofi Placid Adragni and Andrew M. Raim
## https://www.jstatsoft.org/article/view/v061i03

## Modifications made for voi package: 
## Removed "unstr2" structure

pfc <-
function(X, y, fy=NULL, numdir=NULL, structure=c("iso", "aniso", "unstr"), eps_aniso=1e-3, numdir.test=FALSE,...)
{
	"%^%"<-function(M, pow) 
	{ 
		if (prod(dim(M)==list(1,1))) return( as.matrix(M^pow) )
		eigenM = eigen(M) 
		return(eigenM$vectors%*%diag(c(eigenM$values)^pow)%*%t(eigenM$vectors))  
	}
  
	Trace<-function(X)
	{	
		if (!is.matrix(X)) stop("Argument to Trace is not a matrix in pfc");
		return(sum(diag(X))) 
	}
	orthonorm <- function(u) 
	{
		if (is.null(u)) return(NULL)
		if (!(is.matrix(u))) u <- as.matrix(u);
		dd <- dim(u); n <- dd[1]; p <-dd[2];

		if (prod(abs(La.svd(u)$d) > 1e-08) == 0) stop("collinears vectors in orthonorm")
		if (n < p)
		{
			warning("There are too much vectors to orthonormalize in orthonorm.")
			u <- as.matrix(u[, 1:p])
			n <- p
    		}
    		v <- u;
    		if (p > 1)
		{
			for (i in 2:p)
			{
				coef.proj <- c(crossprod(u[, i], v[, 1:(i - 1)]))/diag(crossprod(v[, 1:(i - 1)]));
				v[, i] <- u[, i] - matrix(v[, 1:(i - 1)], nrow = n) %*% matrix(coef.proj, nrow = i - 1)
			}
    		}
		coef.proj <- 1/sqrt(diag(crossprod(v)))
		return(t(t(v) * coef.proj))
	}
## nocov start
	onepfc = function(X, y, fy)
	{
		# X is univariate predictor
		nobs <- length(X); r <- dim(fy)[2]

		P_F <- fy%*%solve(t(fy)%*%fy)%*%t(fy)
		Xc <- scale(X, TRUE, FALSE)
		Sigmahat_fit <- (1/nobs)*t(Xc)%*%P_F%*%(Xc)
		ev.fit <- eigen(Sigmahat_fit)

		temp.dat<-data.frame(cbind(X, fy)); xnam<-paste("xx", 1:r, sep="");
		names(temp.dat)<-c("yy", xnam);
		fm.lm<- as.formula( paste("yy ~ ", paste(xnam, collapse= "+")));
		summary.fm <- summary(lm(fm.lm, data=temp.dat));

		Betahat <- matrix(summary.fm$coefficients[2:(r+1),1], ncol=r);
		Gammahat <- matrix(1, ncol=1, nrow=1); 
		Deltahat <- matrix(summary.fm$sigma^2, ncol=1, nrow=1);
		Muhat <- matrix(summary.fm$coefficients[1,1], ncol=1);

		loglik <- - 0.5*n*(1+log(2*pi*summary.fm$sigma^2));
		numpar <- p  + dim(fy)[2] + 1;
		aic <- -2*loglik + 2*numpar;
		bic <- -2*loglik + log(n)*numpar;

		ans <- list(R=X, Muhat=Muhat, Betahat=Betahat, Gammahat=Gammahat, Deltahat=Deltahat, 
				loglik=loglik, aic=aic, bic=bic, numpar=numpar, numdir=1, model="pfc", 
				call=match.call(), structure="iso", y=y, fy=fy, Xc=Xc, numdir.test=numdir.test);

		class(ans)<- "pfc";

		return(ans)
	}
## nocov end
	
	if (is.null(fy)) {fy <- scale(y, TRUE, TRUE); numdir <- 1}
	r <- dim(fy)[2]; X <- as.matrix(X)
	op <- dim(X); n <- op[1]; p <- op[2] 
	eff.numdir <- min(numdir, r, p)	

	vnames <- dimnames(X)[[2]]
	if (is.null(vnames)) vnames <- paste("X", 1:p, sep="")
	if (p==1) return(onepfc(X=X, y=y, fy=fy))
	
	Muhat <- apply(X, 2, mean)
	Xc <-  scale(X, TRUE, FALSE)

	P_F <- fy%*%solve(t(fy)%*%fy)%*%t(fy)
  
	Sigmahat <- cov(X)
	Sigmahat_fit <- cov(P_F%*%X)
	Sigmahat_res <- Sigmahat - Sigmahat_fit

	if (structure=="iso")
	{
		iso <- function(i)
		{
			ev <- eigen(Sigmahat);	
			ev.fit <- eigen(Sigmahat_fit); 
			all_evalues <-ev.fit$values
			evalues <- all_evalues[1:i]
			sigma2hat <- Re(sum(ev$values)/p); 

			Gammahat <- Re(matrix(ev.fit$vectors[,1:i], ncol=i));
			dimnames(Gammahat) <- list(vnames, paste("Dir", 1:i, sep=""))
			Betahat <-Re(t(Gammahat)%*%t(Xc)%*%fy%*%solve(t(fy)%*%fy));
			sigma2hat <- Re((sum(ev$values)-sum(evalues))/p); 
			Deltahat <- sigma2hat*diag(1, p); 
			dimnames(Deltahat) <- list(vnames, vnames)

			loglik <- - 0.5*n*p*(1+log(2*pi*sigma2hat));
			numpar <- p + (p-i)*i + i*dim(fy)[2] + 1;
			aic <- -2*loglik + 2*numpar;
			bic <- -2*loglik + log(n)*numpar;

			return(list(Betahat=Betahat, Gammahat=Gammahat, Deltahat=Deltahat, 
					evalues=evalues, loglik=loglik, aic=aic, bic=bic, numpar=numpar));
		}

		if (identical(numdir.test, FALSE))
		{
			out <- iso(eff.numdir);

			ans <- list(R=X%*%orthonorm(out$Gammahat), Muhat=Muhat, Betahat=out$Betahat, Gammahat=out$Gammahat, 
					Deltahat=out$Deltahat, loglik=out$loglik, aic=out$aic, bic=out$bic, numpar=out$numpar, 
					numdir=eff.numdir, evalues=out$evalues, structure="iso", y=y, fy=fy,  
					Xc=Xc, call=match.call(expand.dots=TRUE), numdir.test=numdir.test);

			class(ans) <- "pfc";	
			return(ans);		
		}

# nocov start
		if (identical(numdir.test, TRUE))
		{
			aic <- bic <- numpar <- loglik <- vector(length=eff.numdir+1);
			Betahat <- Deltahat <- Gammahat <-vector("list"); 

			# No fitting values (eff.numdir=0)
			ev <- eigen(Sigmahat); 
			sigma2hat <- sum(ev$values)/p; 
			loglik[1] <- - 0.5*n*p*(1+log(2*pi*sigma2hat));
			numpar[1] <- p + 1;
			aic[1] <- -2*loglik[1] + 2*numpar[1];
			bic[1] <- -2*loglik[1] + log(n)*numpar[1];
		
			for (i in 1:eff.numdir)
			{
				fit <- iso(i);
				Betahat[[i]] <-fit$Betahat; 
				Gammahat[[i]] <-fit$Gammahat; 
				Deltahat[[i]] <- fit$Deltahat;
				loglik[i+1] <- fit$loglik; 
				numpar[i+1] <- fit$numpar;
				aic[i+1] <- fit$aic; 
				bic[i+1] <- fit$bic;	
			}
			ans <- list(R=X%*%orthonorm(Gammahat[[eff.numdir]]), Muhat=Muhat, Betahat=Betahat, Gammahat=Gammahat, 
					Deltahat=Deltahat, loglik=loglik, aic=aic, bic=bic, numpar=numpar, 
					numdir=eff.numdir, model="pfc", evalues=fit$evalues, structure="iso", 
					y=y, fy=fy,  Xc=Xc, call=match.call(), numdir.test=numdir.test);

			class(ans)<- "pfc";
			return(ans)
		} 
# nocov end
	}

	if (structure=="aniso")
	{
		aniso = function(X, y, fy, d, eps_aniso=1e-3, numdir.test)
		{
			vnames <- dimnames(X)[[2]]
			if (is.null(vnames)) vnames <- paste("X", 1:ncol(X), sep="")
			op <- dim(X); n <- op[1]; p <- op[2]

			# Initial Step
			fit <- pfc(X=X, y=y, fy=fy, numdir=d, structure="iso", numdir.test=numdir.test)

			if (identical(numdir.test, FALSE))
			{
				Betahatx <- fit$Betahat; Gammahatx <- fit$Gammahat
				Xc <- scale(X, TRUE, FALSE) - fy%*%t(Gammahatx%*%Betahatx)
				deltahat <- diag(cov(Xc))

				repeat
				{
					Xnew = X%*%((1/sqrt(deltahat))*diag(p))
					fit <- pfc(X=Xnew, y=y, fy=fy, numdir=d, structure="iso", numdir.test=FALSE)
					Betahatx <- fit$Betahat; Gammahatx <- (diag(p)*sqrt(deltahat))%*%fit$Gammahat 
					Xc <- scale(X, TRUE, FALSE) - fy%*%t(Gammahatx%*%Betahatx)
					deltahat0 <- diag(t(Xc)%*%(Xc)/n)
					if (sum(abs(deltahat-deltahat0)) < eps_aniso) break
					deltahat <- deltahat0 
				}
				dimnames(Gammahatx) <- list(vnames, paste("Dir", 1:d, sep=""))
				Deltahat <- deltahat*diag(p)
				dimnames(Deltahat) <- list(vnames, vnames)

				loglik <- - 0.5*n*p*(1+log(2*pi)) - 0.5*n*log(prod(deltahat))
				numpar <- p + d*(p-d) + ncol(fy)*d + p 
				aic <- -2*loglik + 2*numpar
				bic <- -2*loglik + log(n)*numpar

				ans <- list(Betahat=Betahatx, Gammahat=orthonorm(Gammahatx), Deltahat=Deltahat, evalues=fit$evalues, 
						loglik=loglik, aic=aic, bic=bic, numpar=numpar, numdir.test=numdir.test)
		
				return(ans)
			}

			Deltahat <- Betahat <- Gammahat <- vector("list")
			aic <- bic <- numpar <- loglik <- vector(length=eff.numdir+1)

			# No fitting values (eff.numdir=0)
			ev <- eigen(Sigmahat); 
			loglik[1] <- - 0.5*n*p*(1+log(2*pi)) - 0.5*n*log(prod(ev$values))
			numpar[1] <- p + p
			aic[1] <- -2*loglik[1] + 2*numpar[1]
			bic[1] <- -2*loglik[1] + log(n)*numpar[1]

			for (i in 1:eff.numdir)
			{
				Betahatx <- fit$Betahat[[i]]; Gammahatx <- fit$Gammahat[[i]] 
				Xc <- scale(X, TRUE, FALSE) - fy%*%t(Gammahatx%*%Betahatx)
				deltahat <- diag(t(Xc)%*%(Xc)/n)

				repeat
				{
					Xnew = X%*%((1/sqrt(deltahat))*diag(p))
					fit2 <- pfc(X=Xnew, y=y, fy=fy, numdir=i, structure="iso", numdir.test=FALSE)
					Betahatx <- fit2$Betahat; Gammahatx <- (diag(p)*sqrt(deltahat))%*%fit2$Gammahat 
					Xc <- scale(X, TRUE, FALSE) - fy%*%t(Gammahatx%*%Betahatx)
					deltahat0 <- diag(t(Xc)%*%(Xc)/n)
					if (sum(abs(deltahat-deltahat0)) < eps_aniso) break
					deltahat <- deltahat0 
				}

				Deltahat[[i]] <- deltahat*diag(p)
				dimnames(Deltahat[[i]]) <- list(vnames, vnames)
				
				loglik[i+1] = - 0.5*n*p*(1+log(2*pi)) - 0.5*n*log(prod(deltahat))
				numpar[i+1] <- p + (p-i)*i + i*dim(fy)[2] + p
				aic[i+1] <- -2*loglik[i+1] + 2*numpar[i+1]
				bic[i+1] <- -2*loglik[i+1] + log(n)*numpar[i+1]
				Betahat[[i]] <- Betahatx
				Gammahat[[i]] <- orthonorm(Gammahatx)
				dimnames(Gammahat[[i]]) <- list(vnames, paste("Dir", 1:i, sep=""))
			}
			ans <- list(Betahat=Betahat, Gammahat=Gammahat, Deltahat=Deltahat, evalues=fit2$evalues, 
						loglik=loglik, aic=aic, bic=bic, numpar=numpar, numdir.test=numdir.test)

			return(ans)	
		}

		fit <- aniso(X=X, y=y, fy=fy, d=eff.numdir, eps_aniso=eps_aniso, numdir.test=numdir.test)

		ans <- list(Muhat=Muhat, Betahat=fit$Betahat, Gammahat=fit$Gammahat, Deltahat=fit$Deltahat, model="pfc",
				loglik=fit$loglik, aic=fit$aic, bic=fit$bic, numpar=fit$numpar, numdir=eff.numdir, 
				evalues=fit$evalues, structure="aniso", Xc=Xc, y=y, fy=fy,  call=match.call(), numdir.test=fit$numdir.test)
		
		if (numdir.test==FALSE) ans$R <- X%*%orthonorm(((fit$Deltahat)%^%(-1))%*%fit$Gammahat) else 
			ans$R <- X%*%orthonorm(((fit$Deltahat[[eff.numdir]])%^%(-1))%*%fit$Gammahat[[eff.numdir]])

		class(ans)<- "pfc"

		return(ans)
	}

	else if (structure=="unstr")
	{
		unstr<-function(i)
		{
			sqrt_Sigmahat_res <- Sigmahat_res%^%0.5 
			Inv_Sqrt_Sigmahat_res <- solve(sqrt_Sigmahat_res)
			lf_matrix <- Inv_Sqrt_Sigmahat_res%*%Sigmahat_fit%*%Inv_Sqrt_Sigmahat_res
			all_evalues <- eigen(lf_matrix, symmetric=T)$values
			evalues <- all_evalues[1:i]

			Vhat <- eigen(lf_matrix, symmetric=T)$vectors
			Vhati <- matrix(Vhat[,1:i], ncol=i)
			Gammahat <- (Sigmahat_res%^%0.5)%*%Vhati%*%solve((t(Vhati)%*%Sigmahat_res%*%Vhati)%^%0.5)  
			dimnames(Gammahat)<- list(vnames, paste("Dir", 1:i, sep=""))

			Khat<-diag(0, p) 
			if (i < min(ncol(fy),p)) {diag(Khat)[(i+1):min(ncol(fy), p )]<- all_evalues[(i+1):min(ncol(fy), p)]}
			Deltahat <- sqrt_Sigmahat_res%*%Vhat%*%(diag(p)+Khat)%*%t(Vhat)%*%sqrt_Sigmahat_res
			dimnames(Deltahat) <- list(vnames, vnames)
			Betahat <- ((t(Vhati)%*%Sigmahat_res%*%Vhati)%^%0.5)%*%t(Vhati)%*%solve(Sigmahat_res%^%0.5)%*%t(Xc)%*%fy%*% solve(t(fy)%*%fy)

			temp0 <- -(n*p/2)*(1 + log(2*pi))
			temp1 <- -(n/2)*log(det(Sigmahat_res)) 
			temp2 <- 0; 

			if (i < min(ncol(fy),p)) temp2 <- -(n/2)*sum(log(1 + all_evalues[(i+1):p]))
			loglik <- temp0 + temp1 + temp2
			numpar <- p + (p-i)*i + i*ncol(fy) + p*(p+1)/2
			aic <- -2*loglik + 2*numpar
			bic <- -2*loglik + log(n)*numpar

			return(list(Betahat=Betahat, Gammahat=Gammahat, Deltahat=Deltahat, evalues=evalues, 
				loglik=loglik, aic=aic, bic=bic, numpar=numpar))
		}

		if (identical(numdir.test, FALSE))
		{
			out <- unstr(eff.numdir)

			ans <- list(R=X%*%orthonorm(solve(out$Deltahat)%*%out$Gammahat), Muhat=Muhat, Betahat=out$Betahat, Gammahat=out$Gammahat, 
					Deltahat=out$Deltahat, evalues=out$evalues, loglik=out$loglik, aic=out$aic, bic=out$bic, numpar=out$numpar, 
					numdir=eff.numdir, model="pfc", structure="unstr", y=y, fy=fy, Xc=Xc,  call=match.call(), numdir.test=numdir.test)

			class(ans) <- "pfc"	
			return(ans);	
		}

		aic <- bic <- numpar <- loglik <- vector(length=eff.numdir+1)
		evalues <- vector(length=eff.numdir)
		Betahat <- Deltahat <- Gammahat <-vector("list") 
 
		loglik[1] <- - 0.5*n*p*(1+log(2*pi)) - 0.5*n*log(det(Sigmahat)) 
		numpar[1] <- p + p*(p+1)/2
    aic[1] <- -2*loglik[1] + 2*numpar[1]
		bic[1] <- -2*loglik[1] + log(n)*numpar[1]
		Deltahat[[1]] <- Sigmahat
    dimnames(Deltahat[[1]]) <- list(vnames, vnames) 

		for (i in 1:eff.numdir)
		{
			fit <- unstr(i);
			Betahat[[i]] <-fit$Betahat 
			Gammahat[[i]] <-fit$Gammahat 
			Deltahat[[i]] <- fit$Deltahat
			loglik[i+1] <- fit$loglik 
			numpar[i+1] <- fit$numpar
			aic[i+1] <- fit$aic
			bic[i+1] <- fit$bic	
		}
		ans <- list(R=X%*%orthonorm(solve(Deltahat[[eff.numdir]])%*%Gammahat[[eff.numdir]]), Muhat=Muhat, 
				Betahat=Betahat, Gammahat=Gammahat, Deltahat=Deltahat, evalues=fit$evalues, loglik=loglik, 
				aic=aic, bic=bic, numpar=numpar, numdir=eff.numdir, model="pfc", structure="unstr", y=y, 
				fy=fy, Xc=Xc, call=match.call(), numdir.test=numdir.test)

		class(ans)<- "pfc"
		return(ans)
	}

}

Try the voi package in your browser

Any scripts or data that you put into this service are public.

voi documentation built on Sept. 17, 2024, 1:07 a.m.