Nothing
# Wallace EcoMod: a flexible platform for reproducible modeling of
# species niches and distributions.
#
# envs_ecoclimate.R
# File author: Wallace EcoMod Dev Team. 2023.
# --------------------------------------------------------------------------
# This file is part of the Wallace EcoMod application
# (hereafter “Wallace”).
#
# Wallace is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# Wallace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Wallace. If not, see <http://www.gnu.org/licenses/>.
# --------------------------------------------------------------------------
#
envs_ecoclimate_module_ui <- function(id) {
ns <- shiny::NS(id)
tagList(
# UI
tags$div(title = 'Select AOGCM',
selectInput(ns("bcAOGCM"),
label = "Select the Atmospheric Oceanic General Circulation Model you want to use",
choices = list("Select AOGCMs" = "",
"CCSM" = "CCSM",
"CNRM" = "CNRM",
"MIROC" = "MIROC",
"FGOALS" = "FGOALS",
"GISS" = "GISS",
"IPSL" = "IPSL",
"MRI" = "MRI",
"MPI" = "MPI")
)),
tags$div(title = 'Select Scenario',
selectInput(ns("bcScenario"),
label = "select the temporal scenario that you want to use",
choices = list("Select Scenario" = "",
"Present" = "Present",
"Holocene (6,000 years ago)" = "Holo",
"LGM (21,000 years ago)" = "LGM")
)),
shinyWidgets::pickerInput(
"ecoClimSel",
label = "Select bioclimatic variables",
choices = setNames(as.list(1:19),
paste0('bio', sprintf("%02d", 1:19))),
multiple = TRUE,
selected = 1:19,
options = list(`actions-box` = TRUE)),
tags$div(
title = "Apply selection to ALL species loaded",
checkboxInput(ns("batch"), label = strong("Batch"), value = FALSE) # Check default (value = FALSE)
),
em("ecoClimate layers have a resolution of 0.5 degrees"), br(), br(),
actionButton(ns("goEcoClimData"), "Load Env Data")
)
}
envs_ecoclimate_module_server <- function(input, output, session, common) {
logger <- common$logger
ecoClimSel <- common$ecoClimSel
occs <- common$occs
spp <- common$spp
curSp <- common$curSp
allSp <- common$allSp
envs.global <- common$envs.global
observeEvent(input$goEcoClimData, {
# WARNING ####
if (is.null(curSp())) {
logger %>% writeLog(type = 'error',
paste0("Before obtaining environmental variables, ",
"obtain occurrence data in 'Occ Data' component."))
return()
}
# Specify more than 2 variables
if (length(ecoClimSel()) < 2) {
logger %>%
writeLog(
type = 'error',
"Select more than two variables.")
return()
}
# FUNCTION CALL ####
ecoClims <- envs_ecoClimate(input$bcAOGCM, input$bcScenario,
as.numeric(ecoClimSel()), logger)
req(ecoClims)
nmEcoClimate <- paste0("ecoClimate_", input$bcAOGCM, "_", input$bcScenario)
envs.global[[nmEcoClimate]] <- ecoClims
# LOAD INTO SPP ####
# loop over all species if batch is on
if (input$batch == FALSE) spLoop <- curSp() else spLoop <- allSp()
# PROCESSING ####
for (sp in spLoop) {
# remove occurrences with NA values for variables
withProgress(
message = paste0("Extracting environmental values for occurrences of ",
spName(sp), "..."), {
occsEnvsVals <- as.data.frame(
raster::extract(ecoClims,
spp[[sp]]$occs[, c('longitude', 'latitude')],
cellnumbers = TRUE))
})
# remove occurrence records with NA environmental values
remOccs <- remEnvsValsNA(spp[[sp]]$occs, occsEnvsVals, sp, logger)
if (!is.null(remOccs)) {
spp[[sp]]$occs <- remOccs$occs
occsEnvsVals <- remOccs$occsEnvsVals
} else {
# When remOccs is null, means that all localities have NAs
return()
}
logger %>% writeLog(hlSpp(sp), "EcoClimate variables ready to use.")
# LOAD INTO SPP ####
spp[[sp]]$envs <- nmEcoClimate
# add columns for env variable values for each occurrence record
if (!any(names(occsEnvsVals) %in% names(spp[[sp]]$occs))) {
spp[[sp]]$occs <- cbind(spp[[sp]]$occs, occsEnvsVals)
} else {
shaEnvNames <- names(occsEnvsVals)[names(occsEnvsVals) %in% names(spp[[sp]]$occs)]
spp[[sp]]$occs <- spp[[sp]]$occs %>% dplyr::mutate(occsEnvsVals[shaEnvNames])
}
# METADATA ####
spp[[sp]]$rmm$data$environment$variableNames <- names(ecoClims)
spp[[sp]]$rmm$data$environment$resolution <- paste(round(raster::res(ecoClims)[1] * 60, digits = 2), "minutes")
spp[[sp]]$rmm$data$environment$extent <- as.character(raster::extent(ecoClims))
spp[[sp]]$rmm$data$environment$sources <- nmEcoClimate
spp[[sp]]$rmm$data$environment$projection <- as.character(raster::crs(ecoClims))
spp[[sp]]$rmm$code$wallace$bcAOGCM <- input$bcAOGCM
spp[[sp]]$rmm$code$wallace$bcScenario <- input$bcScenario
spp[[sp]]$rmm$code$wallace$ecoClimSel <- ecoClimSel()
}
common$update_component(tab = "Results")
})
output$envsPrint <- renderPrint({
req(curSp(), spp[[curSp()]]$envs)
envs.global[[spp[[curSp()]]$envs]]
})
return(list(
save = function() {
# Save any values that should be saved when the current session is saved
list(
bcAOGCM = input$bcAOGCM,
bcScenario = input$bcScenario,
ecoClimSel = ecoClimSel()
)
},
load = function(state) {
# Load
updateSelectInput(session, "bcAOGCM", selected = state$bcAOGCM)
updateSelectInput(session, "bcScenario", selected = state$bcScenario)
shinyWidgets::updatePickerInput(session, "ecoClimSel",
selected = state$ecoClimSel)
}
))
}
envs_ecoclimate_module_result <- function(id) {
ns <- NS(id)
# Result UI
verbatimTextOutput(ns("envsPrint"))
}
envs_ecoclimate_module_map <- function(map, common) {
occs <- common$occs
map %>% clearAll() %>%
addCircleMarkers(data = occs(), lat = ~latitude, lng = ~longitude,
radius = 5, color = 'red', fill = TRUE, fillColor = "red",
fillOpacity = 0.2, weight = 2, popup = ~pop)
}
envs_ecoclimate_module_rmd <- function(species) {
# Variables used in the module's Rmd code
list(
envs_ecoclimate_knit = !is.null(species$rmm$code$wallace$bcAOGCM),
bcAOGCM_rmd = species$rmm$code$wallace$bcAOGCM,
bcScenario_rmd = species$rmm$code$wallace$bcScenario,
ecoClimSel_rmd = printVecAsis(as.numeric(species$rmm$code$wallace$ecoClimSel))
##Alternative using rmm instead of RMD object but not working
#grepl("ecoClimate",species$rmm$data$environment$sources)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.