Nothing
#' Export a meteorological data frame in ADMS format
#'
#' Writes a text file in the ADMS format to a location of the user's choosing,
#' with optional interpolation of missing values.
#'
#' @param dat A data frame imported by [importNOAA()].
#' @param out A file name for the ADMS file. The file is written to the working
#' directory by default.
#' @param interp Should interpolation of missing values be undertaken? If `TRUE`
#' linear interpolation is carried out for gaps of up to and including
#' `maxgap`.
#' @param maxgap The maximum gap in hours that should be interpolated where
#' there are missing data when `interp = TRUE.` Data with gaps more than
#' `maxgap` are left as missing.
#'
#' @return `exportADMS()` returns the input `dat` invisibly.
#' @export
#' @examples
#' \dontrun{
#' # import some data then export it
#' dat <- importNOAA(year = 2012)
#' exportADMS(dat, out = "~/adms_met.MET")
#' }
exportADMS <- function(
dat,
out = "./ADMS_met.MET",
interp = FALSE,
maxgap = 2
) {
# save input for later
input <- dat
# make sure the data do not have gaps
all.dates <- data.frame(
date = seq(
ISOdatetime(
year = as.numeric(format(dat$date[1], "%Y")),
month = 1,
day = 1,
hour = 0,
min = 0,
sec = 0,
tz = "GMT"
),
ISOdatetime(
year = as.numeric(format(dat$date[1], "%Y")),
month = 12,
day = 31,
hour = 23,
min = 0,
sec = 0,
tz = "GMT"
),
by = "hour"
)
)
dat <- merge(dat, all.dates, all = TRUE)
# make sure precipitation is available
if (!"precip" %in% names(dat)) {
dat$precip <- NA
}
if (interp) {
varInterp <- c("ws", "u", "v", "air_temp", "RH", "cl")
# transform wd
dat <- dplyr::mutate(
dat,
u = sin(pi * .data$wd / 180),
v = cos(pi * .data$wd / 180)
)
for (variable in varInterp) {
# if all missing, then don't interpolate
if (all(is.na(dat[[variable]]))) {
return()
}
# first fill with linear interpolation
filled <- stats::approx(
dat$date,
dat[[variable]],
xout = dat$date,
na.rm = TRUE,
rule = 2,
method = "linear"
)$y
# find out length of missing data
is_missing <- rle(is.na(dat[[variable]]))
is_missing <- rep(
ifelse(is_missing$values, is_missing$lengths, 0),
times = is_missing$lengths
)
id <- which(is_missing > maxgap)
# update data frame
dat[[variable]] <- filled
dat[[variable]][id] <- NA
}
dat <- dplyr::mutate(
dat,
wd = as.vector(atan2(.data$u, .data$v) * 360 / 2 / pi)
)
# correct for negative wind directions
ids <- which(dat$wd < 0) ## ids where wd < 0
dat$wd[ids] <- dat$wd[ids] + 360
dat <- dplyr::select(dat, -"v", -"u")
}
# exports met data to ADMS format file
year <- as.numeric(format(dat$date, "%Y"))
day <- as.numeric(format(dat$date, "%j"))
hour <- as.numeric(format(dat$date, "%H"))
station <- "0000"
# check if present
if (!"cl" %in% names(dat)) {
dat$cl <- NA
}
if (!"precip" %in% names(dat)) {
dat$precip <- NA
}
# data frame of met data needed
adms <- data.frame(
station,
year,
day,
hour,
round(dat$air_temp, 1),
round(dat$ws, 1),
round(dat$wd, 1),
round(dat$RH, 1),
round(dat$cl),
round(dat$precip, 1),
stringsAsFactors = FALSE
)
# message key data capture rates
calc_dc <- function(x) {
round(100 * mean(!is.na(x)), 1)
}
cli::cli_inform(
c(
"i" = "Data capture for {.strong wind speed}: {calc_dc(dat$ws)}%",
"i" = "Data capture for {.strong wind direction}: {calc_dc(dat$wd)}%",
"i" = "Data capture for {.strong temperature}: {calc_dc(dat$air_temp)}%",
"i" = "Data capture for {.strong cloud cover}: {calc_dc(dat$cl)}%"
)
)
# replace NA with -999
adms[] <- lapply(adms, function(x) replace(x, is.na(x), -999))
# write the data file
utils::write.table(
adms,
file = out,
col.names = FALSE,
row.names = FALSE,
sep = ",",
quote = FALSE
)
# add the header lines
fConn <- file(out, "r+")
Lines <- readLines(fConn)
writeLines(
c(
"VARIABLES:\n10\nSTATION DCNN\nYEAR\nTDAY\nTHOUR\nT0C\nU\nPHI\nRHUM\nCL\nP\nDATA:",
Lines
),
con = fConn
)
close(fConn)
# return input invisibly
invisible(input)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.