Nothing
#' Read Tabulated Files Exported by FragPipe At Protein Level
#'
#' This function allows importing protein identification and quantification results from \href{https://fragpipe.nesvilab.org/}{Fragpipe}
#' which were previously exported as tabulated text (tsv). Quantification data and other relevant information will be extracted similar like the other import-functions from this package.
#' The final output is a list containing the elements: \code{$annot}, \code{$raw} and \code{$quant}, or a data.frame with the quantication data and a part of the annotation if argument \code{separateAnnot=FALSE}.
#'
#' @details
#' This function has been developed using Fragpipe versions 18.0 and 19.0.
#'
#' Using the argument \code{suplAnnotFile} it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information.
#'
#' @param fileName (character) name of file to be read
#' @param path (character) path of file to be read
#' @param normalizeMeth (character) normalization method, defaults to \code{median}, for more details see \code{\link[wrMisc]{normalizeThis}})
#' @param sampleNames (character) custom column-names for quantification data; this argument has priority over \code{suplAnnotFile}
#' @param read0asNA (logical) decide if initial quntifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
#' @param quantCol (character or integer) exact col-names, or if length=1 content of \code{quantCol} will be used as pattern to search among column-names for $quant using \code{grep}
#' @param refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
#' @param separateAnnot (logical) if \code{TRUE} output will be organized as list with \code{$annot}, \code{$abund} for initial/raw abundance values and \code{$quant} with final log2 (normalized) quantitations
#' @param annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..PSMs","X..Unique.Peptides", "X..AAs","MW..kDa.") )
#' @param FDRCol (list) optional indication to search for protein FDR information
#' @param wex (integer) relative expansion factor of the violin-plot (will be passed to \code{\link[wrGraph]{vioplotW}})
#' @param specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for comtaminants - will be marked as 'conta', 2nd for main species- marked as 'mainSpe',
#' and optional following ones for supplemental tags/species - maked as 'species2','species3',...);
#' if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument \code{annotCol})
#' @param gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from \code{sdrf} and/or \code{suplAnnotFile} (if provided) \code{}
#' @param sdrf (character, list or data.frame) optional extraction and adding of experimenal meta-data: if character, this may be the ID at ProteomeExchange,
#' the second & third elements may give futher indicatations for automatic organization of groups of replicates.
#' Besides, the output from \code{readSdrf} or a list from \code{defineSamples} may be provided;
#' if \code{gr} is provided, \code{gr} gets priority for grouping of replicates;
#' if \code{sdrfOrder=TRUE} the output will be put in order of sdrf
#' @param suplAnnotFile (logical or character) optional reading of supplemental files; however, if \code{gr} is provided, \code{gr} gets priority for grouping of replicates;
#' if \code{character} the respective file-name (relative or absolute path)
#' @param groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to \code{readSampleMetaData}.
#' May contain \code{lowNumberOfGroups=FALSE} for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)
#' May contain \code{chUnit} (logical or character) to be passed to \code{readSampleMetaData()} for (optional) adjustig of unit-prefixes in meta-data group labels, in case multiple different unit-prefixes
#' are used (eg '100pMol' and '1nMol').
#' @param plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using \code{normalizeMeth}); if integer, it will be passed to \code{layout} when plotting
#' @param titGraph (character) custom title to plot of distribution of quantitation values
#' @param silent (logical) suppress messages
#' @param debug (logical) additional messages for debugging
#' @param callFrom (character) allow easier tracking of messages produced
#' @return This function returns a list with \code{$raw} (initial/raw abundance values), \code{$quant} with final normalized quantitations, \code{$annot}, \code{$counts} an array with number of peptides, \code{$quantNotes}
#' and \code{$notes}; or if \code{separateAnnot=FALSE} the function returns a data.frame with annotation and quantitation only
#' @seealso \code{\link[utils]{read.table}}, \code{\link[wrMisc]{normalizeThis}}) , \code{\link{readMaxQuantFile}}, \code{\link{readProtDiscovFile}}, \code{\link{readProlineFile}}
#' @examples
#' FPproFi1 <- "tinyFragpipe1.tsv.gz"
#' path1 <- system.file("extdata", package="wrProteo")
#' ## let's define the main species and allow tagging some contaminants
#' specPref1 <- c(conta="conta|CON_|LYSC_CHICK", mainSpecies="MOUSE")
#' dataFP <- readFragpipeFile(path1, file=FPproFi1, specPref=specPref1, tit="Tiny Fragpipe Data")
#' summary(dataFP$quant)
#'
#' @export
readFragpipeFile <- function(fileName, path=NULL, normalizeMeth="median", sampleNames=NULL, read0asNA=TRUE, quantCol="Intensity$",
annotCol=NULL, refLi=NULL, separateAnnot=TRUE, FDRCol=list("Protein.Probability", lim=0.99), # contamCol="Contaminant",
groupPref=list(lowNumberOfGroups=TRUE, chUnit=TRUE), plotGraph=TRUE, titGraph="FragPipe", wex=1.6, specPref=c(conta="CON_|LYSC_CHICK", mainSpecies="OS=Homo sapiens"),
gr=NULL, sdrf=NULL, suplAnnotFile=FALSE, silent=FALSE, debug=FALSE, callFrom=NULL) {
## read Fragpipe exported txt
fxNa <- wrMisc::.composeCallName(callFrom, newNa="readFragpipeFile")
oparMar <- if(plotGraph) graphics::par("mar") else NULL # only if figure might be drawn
reqPa <- c("utils","wrMisc")
chPa <- sapply(reqPa, requireNamespace, quietly=TRUE)
if(any(!chPa)) stop("package(s) '",paste(reqPa[which(!chPa)], collapse="','"),"' not found ! Please install first from CRAN")
if(!isTRUE(silent)) silent <- FALSE
if(isTRUE(debug)) silent <- FALSE else debug <- FALSE
excluCol <- "^Abundances.Count" # exclude this from quantifications columns
cleanDescription <- TRUE # clean 'Description' for artifacts of truncated text (tailing ';' etc)
infoDat <- infoFi <- setupSd <- parametersD <- NULL # initialize
## check if path & file exist
if(!grepl("\\.tsv$|\\.tsv\\.gz$", fileName)) message(fxNa,"Trouble ahead, expecting tabulated text file (the file'",fileName,"' might not be right format) !!")
paFi <- wrMisc::checkFilePath(fileName, path, expectExt="tsv", compressedOption=TRUE, stopIfNothing=TRUE, callFrom=fxNa, silent=silent,debug=debug)
if(debug) message(fxNa,"rfp0a ..")
## note : reading sample-setup from 'suplAnnotFile' at this place won't allow comparing if number of samples/columns corresponds to data; do after reading main data
if(debug) message(fxNa,"rfp0 .. Ready to read", if(length(path) >0) c(" from path ",path[1])," the file ",fileName[1])
## read (main) file
## future: look for fast reading of files
tmp <- try(utils::read.delim(file.path(paFi), stringsAsFactors=FALSE), silent=TRUE)
if(length(tmp) <1 || inherits(tmp, "try-error") || length(dim(tmp)) <2) {
if(inherits(tmp, "try-error")) warning("Unable to read input file ('",paFi,"')! (check if rights to read)") else {
if(!silent) message(fxNa,"Content of file '",paFi,"' seeps empty or non-conform ! Returning NULL; check if this is really a Fragpipe-file") }
NULL
} else {
if(debug) { message(fxNa,"rfp1 .. dims of initial data : ", nrow(tmp)," li and ",ncol(tmp)," col "); rfp1 <- list(fileName=fileName,path=path,paFi=paFi,tmp=tmp,normalizeMeth=normalizeMeth,sampleNames=sampleNames,read0asNA=read0asNA,quantCol=quantCol,
annotCol=annotCol,refLi=refLi,separateAnnot=separateAnnot,FDRCol=FDRCol )}
## locate & extract annotation
## note : space (' ') in orig colnames are transformed to '.'
if(length(annotCol) <1) annotCol <- c("Protein","Protein.ID","Entry.Name","Description","Gene","Organism", "Protein.Length","Protein.Existence","Protein.Probability",
"Top.Peptide.Probability", "Combined.Total.Peptides","Combined.Spectral.Count","Combined.Unique.Spectral.Count")
## note cols 2-6 are part to common format wrProteo
PSMCol <- "\\.Spectral\\.Count$" # pattern searching tag for PSM-data
PepCol <- "Unique\\.Spectral\\.Count$" # pattern searching tag for Number of peptides
## future option : lateron rename columns called as "Description" to annotCol[2]
## below use explicit colnames "Accession","Description", rename if tolower() fits
.chColNa <- function(x, mat, renameTo=NULL, silent=FALSE, fxNa=NULL){
## check in 'matr' for column-name 'x', if required rename best hit (if no direct hit look using grep, then grep wo case); return corrected mat
chX <- x %in% colnames(mat)
if(all(chX)) {
if(is.character(renameTo) && length(renameTo) ==1) colnames(mat)[match(x, colnames(mat))] <- renameTo # juste simple rename (single col only)
} else { # try to localize column to use
chX <- grep(x, colnames(mat))
if(length(chX) >0) {
if(is.character(renameTo) && length(renameTo) ==1) colnames(mat)[chX[1]] <- renameTo else x
if(!silent && length(chX) >1) message(fxNa,"Found multiple columns containing '",x,"' : ",wrMisc::pasteC(colnames(mat)[chX], quoteC="'"),", using 1st")
} else {
chX <- grep(tolower(x), tolower(colnames(mat)))
if(length(chX) >0) {
if(is.character(renameTo) && length(renameTo) ==1) colnames(mat)[chX[1]] <- renameTo else x
if(!silent && length(chX) >1) message(fxNa,"Found multiple columns containing '",tolower(x),"' : ",wrMisc::pasteC(colnames(mat)[chX], quoteC="'"),", using 1st")
} else stop("Could NOT find column '",x,"' !!\n (available columns ",wrMisc::pasteC(colnames(mat), quoteC="'"),")") }
}
mat }
## check for essential colnames !
if(is.character(annotCol)) annotColNo <- match(annotCol, colnames(tmp))
chNa <- is.na(annotColNo)
if(any(chNa) & silent) message(fxNa,"Missing ",sum(chNa)," annotation columns: ",wrMisc::pasteC(annotCol[chNa], quoteC="'"))
## rename to wrProteo format
tmp <- .chColNa(annotCol[2], tmp, renameTo="Accession", silent=silent, fxNa=fxNa) # rename 'Protein ID' to 'Accession' (Uniprot ID)
tmp <- .chColNa(annotCol[3], tmp, renameTo="EntryName", silent=silent, fxNa=fxNa) # like THOC2_MOUSE
tmp <- .chColNa(annotCol[4], tmp, renameTo="Description", silent=silent, fxNa=fxNa) # full (long) name
annot <- cbind(Accession=tmp[,"Accession"], EntryName=tmp[,"EntryName"], GeneName=NA, Species=NA, Contam=NA, SpecType=NA,
Description=tmp[,"Description"], tmp[,wrMisc::naOmit(annotColNo[-(1:6)])]) # may be better to name column 'species'
if(debug) { message(fxNa,"rfp2 .. annotColNo : ", wrMisc::pasteC(annotColNo)); rfp2 <- list(annot=annot,annotCol=annotCol,tmp=tmp,specPref=specPref )}
## Species (need to run before reparsing badly parsed)
if(!is.na(annotColNo[6])) { spec <- tmp[,annotColNo[6]]
spec <- sub("^\ +|\ +$","", spec) # remove heading or tailing (white) space
chOX <- grep(" OX=", spec)
if(length(chOX) >0) { OX <- sub(" OX=", "", spec[chOX])
spec[chOX] <- sub(" OX=[[:digit:]]+[[:print:]]*","", spec[chOX])
chO2 <- nchar(spec[chOX]) <3 & nchar(OX) >1
if(any(chO2)) spec[chOX[which(chO2)]] <- OX[which(chO2)] # use OX=.. in case no other information available
}
if(TRUE) spec <- sub(" \\([[:alpha:]][[:print:]]+\\).*", "", spec) # remove ' (..)'
annot[,"Species"] <- spec
}
## look for not well parsed (use separator '|' as indicator)
chPa <- grep("\\|", annot[,"Accession"])
if(length(chPa) >0) {
chSp <- grep(" ", annot[chPa,"Accession"])
if(length(chSp) >0) {
# extract species
chOS <- grep("[[:print:]]+ OS=[[:alpha:]]", annot[chPa[chSp],"Accession"])
if(length(chOS) >0) annot[chPa[chSp[chOS]],"Species"] <- sub(" [[:upper:]]{2}=.+","", sub("[[:print:]]+ OS=","", annot[chPa[chSp[chOS]],"Accession"])) # extract species
## extract GeneName
chGn <- grep("[[:print:]]+ GN=", annot[chPa[chSp],"Accession"])
if(length(chGn) >0) annot[chPa[chSp[chGn]],"GeneName"] <- sub(" [[:upper:]]{2}=.+","", sub("[[:print:]]+ GN=","", annot[chPa[chSp[chGn]],"Accession"]))
## extract Description
annot[chPa[chSp],"Description"] <- sub(".*? ", "", sub(" [[:upper:]]{2}=.+","", annot[chPa[chSp],"Accession"]))
## extract EntryName (option 1)
annot[chPa[chSp],"EntryName"] <- gsub(".*\\|","", sub(" .+","", annot[chPa,"Accession"]))
} else {
annot[chPa,"EntryName"] <- gsub(".*\\|","", annot[chPa,"Accession"]) ## extract EntryName (option 2)
}
## extract Accession
annot[chPa,"Accession"] <- sapply(strsplit(annot[chPa,"Accession"], "\\|"), function(x) if(length(x) >1) x[2] else NA)
}
## clean 'Description' entries: remove tailing punctuation or open brackets (ie not closed) at end of (truncated) fasta header
if(cleanDescription) {
if(debug) { message(fxNa,"rfp3a") }
annot[,"Description"] <- sub("[[:punct:]]+$","", sub("\\ +$", "", annot[,"Description"])) # tailing ';' and/or tailing space
annot[,"Description"] <- sub(" \\([[:alpha:]]*$", "", annot[,"Description"]) # tailing (ie truncated) open '(xxx'
}
if(debug) { message(fxNa,"rfp3b"); rfp3b <- list() }
if(debug) {message(fxNa,"rfp4 .. dim annot: ", nrow(annot)," li and ",ncol(annot)," cols; colnames : ",wrMisc::pasteC(colnames(annot))," ")}
.MultGrep <- function(pat, y) if(length(pat)==1) grep(pat, y) else unlist(sapply(pat, grep, y)) # (multiple) grep() when length of pattern 'pat' >0
## Contam
if("Contaminant" %in% colnames(annot)) { # just in case there is a column called 'Contaminant' (so far not seen)
useLi <- which[nchar(annot[,"Contaminant"]) >0 && !is.na(annot[,"Contaminant"])]
if(length(useLi) >0) annot[useLi,"Contam"] <- toupper(gsub(" ","",annot[useLi,"Contaminant"]))}
chConta <- grep("^contam", tmp[,annotCol[1]]) # specific to Fragpipe
if(length(chConta) >0) annot[chConta,"Contam"] <- TRUE
## get more species annot; separate multi-species (create columns 'Accession','GeneName','Species','SpecType')
chSp <- is.na(annot[,"Species"]) | nchar(annot[,"Species"]) <2
if(any(chSp)) { chSep <- grep("_", annot[which(chSp),"EntryName"]) # look for eg 'TRY1_BOVIN'
if(length(chSep) >0) { chSep <- which(chSp)[chSep]
spe2 <- sub("[[:alnum:]]+_", "", annot[chSep,"EntryName"])
if(debug) message(fxNa,"Recover Species name for ",length(chSep)," entries based on 'EntryName'")
commonSpec <- .commonSpecies()
chSp3 <- which(sub("^_","",commonSpec[,1]) %in% spe2)
if(length(chSp3) >0) for(i in chSp3) annot[chSep,"Species"] <- commonSpec[i,2]
}
chSp <- is.na(annot[,"Species"]) | nchar(annot[,"Species"]) <2 } # update
if(debug) {message(fxNa,"rfp6d .. "); rfp6d <- list(annot=annot,tmp=tmp,chSp=chSp,specPref=specPref,annotCol=annotCol,PSMCol=PSMCol,PepCol=PepCol)}
## look for tags from specPref
if(length(specPref) >0) {
## set annot[,"specPref"] according to specPref
annot <- .extrSpecPref(specPref, annot, silent=silent, debug=debug, callFrom=fxNa)
} else if(debug) message(fxNa,"Note: Argument 'specPref' not specifed (empty)")
if(debug) {message(fxNa,"rfp6b .. ")}
if(!silent) {
if(any(chSp, na.rm=TRUE) && !all(chSp)) message(fxNa,"Note: ",sum(chSp)," (out of ",nrow(tmp),") lines with unrecognized species")
if(!all(chSp)) { tab <- table(annot[,"Species"])
tab <- rbind(names(tab), paste0(": ",tab," ; "))
if(!silent) message(fxNa,"Count by 'specPref' : ",apply(tab, 2, paste)) }} # all lines assigned
if(debug) {message(fxNa,"rfp6e .. ")}
## check for unique annot[,"Accession"]
chDu <- duplicated(annot[,"Accession"], fromLast=FALSE)
if(any(chDu)) { warning(fxNa," NOTE : ",sum(chDu)," entries have same '",annotCol[2],"' (ie Accession) - correcting to UNIQUE !")
rownames(tmp) <- rownames(annot) <- wrMisc::correctToUnique(annot[,"Accession"], sep="_", atEnd=TRUE, callFrom=fxNa)
} else { rownames(annot) <- rownames(tmp) <- annot[,"Accession"] }
if(debug) { message(fxNa,"rfp7 .. dim annot ",nrow(annot)," and ",ncol(annot)); rfp7 <- list() }
## locate & extract abundance/quantitation data
msg <- " CANNOT find ANY quantification columns"
if(length(quantCol) >1) {
## explicit columns (for abundance/quantitation data)
if(is.character(quantCol)) quantCol <- match(quantCol, colnames(tmp))
} else {
## pattern search (for abundance/quantitation data)
## problem : extract 'xx1.Intensity' but NOT 'xx.MaxLFQ.Intensity'
useMaxLFQItens <- FALSE
quantColIni <- quantCol <- grep(quantCol, colnames(tmp))
chLFQ <- grep("MaxLFQ\\.", colnames(tmp)[quantCol])
if(length(chLFQ) >0) { if(!silent && length(chLFQ)==length(quantCol)) message(fxNa,"All quantification columns are MaxLFQ !")
if(length(chLFQ) < length(quantCol)) quantCol <- quantCol[(if(useMaxLFQItens) 1 else -1) *chLFQ] else warning("No non-MaxLFQ data available, using MaxLFQ.Intensity instead !") }
}
if(length(quantCol) <1) stop(msg," ('",quantCol,"')")
abund <- as.matrix(tmp[, quantCol])
rownames(abund) <- annot[,"Accession"]
if(debug) { message(fxNa,"rfp8 .. dim abund ",nrow(abund)," and ",ncol(abund)) ; rfp8 <- list(abund=abund,sampleNames=sampleNames,annot=annot,tmp=tmp,annot=annot,specPref=specPref)}
## check & clean abundances
## add custom sample names (if provided)
if(length(sampleNames) ==ncol(abund) && ncol(abund) >0) {
if(debug) { message(fxNa,"Valid 'sampleNames' were provided rfp8b") }
if(length(unique(sampleNames)) < length(sampleNames)) {
if(!silent) message(fxNa,"Custom sample names not unique, correcting to unique")
sampleNames <- wrMisc::correctToUnique(sampleNames, callFrom=fxNa) }
colnames(abund) <- sampleNames
}
if(debug) { message(fxNa,"rfp9"); rfp9 <- list(abund=abund,sampleNames=sampleNames,annot=annot,tmp=tmp,annot=annot,specPref=specPref,FDRCol=FDRCol)}
## (optional) filter by FDR (so far use 1st of list where matches are found from argument FDRCol)
if(length(FDRCol) >0) {
if(FDRCol[[1]] %in% colnames(tmp)) {
if(length(FDRCol[[2]]) >0 && is.numeric(FDRCol[[2]])) FdrLim <- FDRCol[[2]][1] else {
if(!silent) message(fxNa,"No valid FDR limit found, using default 0.95 (ie 5% filter)")
FdrLim <- 0.95 }
rmLi <- which(as.numeric(tmp[,FDRCol[[1]]]) < FdrLim) # default 5% 'FDR' filter
if(length(rmLi) == nrow(abund)) warning(fxNa,"Omitting FDR-filter; otherwise NO MORE LINES/proteins remaining !!!") else {
if(length(rmLi) >0) {
if(!silent) message(fxNa,"Removing ",length(rmLi)," lines/proteins removed as NOT passing protein identification filter at ",FdrLim, if(debug) " rfp9b")
abund <- abund[-rmLi,]
if(length(dim(abund)) <2) abund <- matrix(abund, nrow=1, dimnames=list(rownames(annot)[-rmLi], names(abund)))
annot <- if(nrow(abund) ==1) matrix(annot[-rmLi,], nrow=1, dimnames=list(rownames(abund), colnames(annot))) else annot[-rmLi,]
tmp <- if(nrow(abund) ==1) matrix(tmp[-rmLi,], nrow=1, dimnames=list(rownames(abund), colnames(tmp))) else tmp[-rmLi,]}
}
}
}
if(debug) { message(fxNa,"rfp11 .. length(FDRCol) ",length(FDRCol)," dim annot ",nrow(annot)," and ",ncol(annot)); rfp11 <- list()}
PSMCol <- "\\.Spectral\\.Count$" # pattern searching tag for PSM-data
PepCol <- "Unique\\.Spectral\\.Count$" # pattern searching tag for Number of peptides
PSMColExcl <- "Total\\.Spectral\\.Count$" # exclude this pattern searching tag for PSM
usTy <- c("PSM", "UniquePeptides")
## optional/additional counting results (PSM, no of peptides)
PSMExl <- grep(paste0("Combined",PSMCol), colnames(tmp))
PepExl <- grep(paste0("Combined\\.",PepCol), colnames(tmp))
PSMCol <- if(length(PSMCol) ==1) grep(PSMCol, colnames(tmp)) else NULL
PepCol <- if(length(PepCol) ==1) grep(PepCol, colnames(tmp)) else NULL
if(any(c(length(PSMExl), length(PSMColExcl)) >0)) PSMCol <- PSMCol[-which(PSMCol %in% c(PepCol, PSMExl, grep(PSMColExcl, colnames(tmp))))] # remove unwanted columns
if(length(PepExl) >0) PepCol <- PepCol[-which(PepCol %in% PepExl)]
if(any(c(length(PSMCol), length(PepCol)) >0)) {
counts <- array(NA, dim=c(nrow(abund), ncol(abund), length(usTy)), dimnames=list(rownames(abund),colnames(abund), usTy))
if(length(PSMCol) >0) counts[,,"PSM"] <- as.matrix(tmp[,PSMCol])
if(length(PepCol) >0) counts[,,"UniquePeptides"] <- as.matrix(tmp[,PepCol])
} else counts <- NULL
if(debug) {message(fxNa,"rfp12 .. ");
rfp12 <- list(tmp=tmp,abund=abund,annot=annot,sdrf=sdrf, fileName=fileName,path=path,paFi=paFi,normalizeMeth=normalizeMeth,sampleNames=sampleNames,
refLi=refLi,specPref=specPref,read0asNA=read0asNA,quantCol=quantCol,annotCol=annotCol,refLi=refLi,separateAnnot=separateAnnot,FDRCol=FDRCol,gr=gr) }
## correct colnames from 'Xabc_1.Intensity' to 'abc_1'
ch1 <- grepl("^X[[:digit:]]", colnames(abund))
if(any(ch1)) colnames(abund)[which(ch1)] <- sub("^X","", colnames(abund)[which(ch1)])
colnames(abund) <- sub("\\.Intensity$","", colnames(abund))
## check for reference for normalization
refLiIni <- refLi
if(is.character(refLi) && length(refLi)==1) {
refLi <- which(annot[,"SpecType"]==refLi)
if(length(refLi) <1 ) { refLi <- 1:nrow(abund)
if(!silent) message(fxNa,"Could not find any proteins matching argument 'refLi=",refLiIni,"', ignoring ...")
} else {
if(!silent) message(fxNa,"Normalize using (custom) subset of ",length(refLi)," lines specified as '",refLiIni,"'")}} # may be "mainSpe"
## set 0 values to NA (avoid -Inf at log2)
if(!isFALSE(read0asNA)) { ch0 <- abund ==0
if(any(ch0, na.rm=TRUE)) abund[which(ch0)] <- NA }
## take log2 & normalize
quant <- try(wrMisc::normalizeThis(log2(abund), method=normalizeMeth, mode="additive", refLines=refLi, silent=silent, callFrom=fxNa), silent=TRUE)
if(debug) { message(fxNa,"rfp13 .. dim quant: ", nrow(quant)," li and ",ncol(quant)," cols; colnames : ",wrMisc::pasteC(colnames(quant))," ")
rfp13 <- list(tmp=tmp,quant=quant,abund=abund,annot=annot,sdrf=sdrf, fileName=fileName,path=path,paFi=paFi,normalizeMeth=normalizeMeth,sampleNames=sampleNames,groupPref=groupPref,
refLi=refLi,refLiIni=refLiIni,specPref=specPref,read0asNA=read0asNA,quantCol=quantCol,annotCol=annotCol,separateAnnot=separateAnnot,FDRCol=FDRCol,gr=gr,silent=silent,debug=debug) }
### GROUPING OF REPLICATES AND SAMPLE META-DATA
if(length(suplAnnotFile) >0 || length(sdrf) >0) {
if(length(sampleNames) %in% c(1, ncol(abund))) groupPref$sampleNames <- sampleNames
if(length(gr) %in% c(1, ncol(abund))) groupPref$gr <- gr
setupSd <- readSampleMetaData(sdrf=sdrf, suplAnnotFile=suplAnnotFile, quantMeth="FP", path=path, abund=utils::head(quant), chUnit=isTRUE(groupPref$chUnit), groupPref=groupPref, silent=silent, debug=debug, callFrom=fxNa)
}
if(debug) {message(fxNa,"rfp13b .."); rfp13b <- list()}
## finish groups of replicates & annotation setupSd
setupSd <- .checkSetupGroups(abund=abund, setupSd=setupSd, gr=gr, sampleNames=sampleNames, quantMeth="FP", silent=silent, debug=debug, callFrom=fxNa)
## option : set order of samples as sdrf
if("sdrfOrder" %in% names(sdrf) && isTRUE(as.logical(sdrf["sdrfOrder"])) && length(setupSd$iniSdrfOrder)==ncol(abund) && ncol(abund) >1) { # set order according to sdrf (only if >1 samples)
nOrd <- order(setupSd$iniSdrfOrder)
## rename columns according to sdrf and set order of quant and abund ..
abund <- abund[,nOrd]
if(length(quant) >0) quant <- quant[,nOrd]
if(length(setupSd$sampleNames)==ncol(quant)) {
colNa <- colnames(abund) <- setupSd$sampleNames <- setupSd$sampleNaSdrf[nOrd] #old# setupSd$sampleNames[nOrd] ## take sample names from sdrf via setupSd$sampleNaSdrf
if(length(quant) >0) colnames(quant) <- setupSd$sampleNaSdrf[nOrd] #old# setupSd$sampleNames[nOrd]
} else colNa <- colnames(abund)
## now adapt order of setupSd, incl init Sdrf
if(length(setupSd) >0) {
is2dim <- sapply(setupSd, function(x,le) length(dim(x))==2 && nrow(x)==le, le=length(nOrd)) # look for matr or df to change order of lines
if(any(is2dim) >0) for(i in which(is2dim)) setupSd[[i]] <- setupSd[[i]][nOrd,]
isVe <- sapply(setupSd, function(x,le) length(x)==le && length(dim(x)) <1, le=length(nOrd)) # look for vector to change order in setupSd
if(any(isVe) >0) for(i in which(isVe)) setupSd[[i]] <- setupSd[[i]][nOrd] }
gr <- gr[nOrd]
if(length(counts) >0 && length(dim(counts))==3) counts <- array(counts[,nOrd,], dim=c(nrow(counts), length(nOrd), dim(counts)[3]),
dimnames=list(rownames(counts), colnames(counts)[nOrd], dimnames(counts)[[3]]))
## try re-adjusting levels
tm1 <- sub("^[[:alpha:]]+( |_|-|\\.)+[[:alpha:]]+","", colnames(abund)) # remove heading text
if(all(grepl("^[[:digit:]]", tm1))) {
tm1 <- try(as.numeric(sub("( |_|-|\\.)*[[:alpha:]].*","", tm1)), silent=TRUE) # remove tailing text and try converting to numeric
if(!inherits(tm1, "try-error")) {
setupSd$level <- match(tm1, sort(unique(tm1)))
names(setupSd$level) <- tm1
if(!silent) message(fxNa,"Sucessfully re-adjusted levels after bringing in order of Sdrf")}
}
} else {
## harmonize sample-names/2
colNa <- colnames(abund)
chGr <- grepl("^X[[:digit:]]", colNa) # check & remove heading 'X' from initial column-names starting with digits
if(any(chGr)) colNa[which(chGr)] <- sub("^X","", colNa[which(chGr)]) #
colnames(quant) <- colNa
if(length(abund) >0) colnames(abund) <- colNa
}
if(length(setupSd$sampleNames)==ncol(abund)) setupSd$sampleNames <- colNa #no#else setupSd$groups <- colNa
if(length(dim(counts)) >1 && length(counts) >0) colnames(counts) <- colNa
if(debug) {message(fxNa,"Read sample-meta data, rfp14"); rfp14 <- list(setupSd=setupSd, sdrf=sdrf, suplAnnotFile=suplAnnotFile,quant=quant,abund=abund,plotGraph=plotGraph)}
## main plotting of distribution of intensities
custLay <- NULL
if(is.numeric(plotGraph) && length(plotGraph) >0) {custLay <- as.integer(plotGraph); plotGraph <- TRUE} else {
if(!isTRUE(plotGraph)) plotGraph <- FALSE}
if(plotGraph) .plotQuantDistr(abund=abund, quant=quant, custLay=custLay, normalizeMeth=normalizeMeth, softNa="FragPipe",
refLi=refLi, refLiIni=refLiIni, tit=titGraph, las=NULL, silent=silent, callFrom=fxNa, debug=debug)
if(debug) {message(fxNa,"Read sample-meta data, rfp15"); rfp15 <- list()}
## meta-data
notes <- c(inpFile=paFi, qmethod="FragPipe", qMethVersion=if(length(infoDat) >0) unique(infoDat$Software.Revision) else NA,
identType="protein", rawFilePath= if(length(infoDat) >0) infoDat$File.Name[1] else NA, normalizeMeth=normalizeMeth, call=deparse(match.call()),
created=as.character(Sys.time()), wrProteo.version=paste(utils::packageVersion("wrProteo"), collapse="."), machine=Sys.info()["nodename"])
## final output
if(isTRUE(separateAnnot)) list(raw=abund, quant=quant, annot=annot, counts=counts, sampleSetup=setupSd, quantNotes=parametersD, notes=notes) else data.frame(quant,annot) }
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.