Description Usage Arguments Details Examples
Routine functions for the GPCM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | model_gpcm_prob(t, a, b, d, D = 1.702, insert_d0 = NULL)
model_gpcm_info(t, a, b, d, D = 1.702, insert_d0 = NULL)
model_gpcm_lh(u, t, a, b, d, D = 1.702, insert_d0 = NULL,
log = FALSE)
model_gpcm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
d = NULL, D = 1.702, sort_d = FALSE, t_dist = c(0, 1),
a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), missing = NULL)
model_gpcm_rescale(t, a, b, d, param = c("t", "b"), mean = 0, sd = 1)
model_gpcm_plot(a, b, d, D = 1.702, insert_d0 = NULL,
type = c("prob", "info"), by_item = FALSE, total = FALSE,
xaxis = seq(-6, 6, 0.1))
model_gpcm_plot_loglh(u, a, b, d, D = 1.702, insert_d0 = NULL,
xaxis = seq(-6, 6, 0.1), show_mle = FALSE)
|
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
item location parameters, 1d vector |
d |
item category parameters, 2d vector |
D |
the scaling constant, 1.702 by default |
insert_d0 |
insert an initial category value |
u |
the observed scores (starting from 0), 2d matrix |
log |
TRUE to return log-likelihood |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
n_c |
the number of score categories |
sort_d |
|
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution parameters of a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
missing |
the proportion or number of missing responses |
param |
the parameter of the new scale: 't' or 'b' |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
type |
the type of plot, prob for ICC and info for IIFC |
by_item |
TRUE to combine categories |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
show_mle |
TRUE to print maximum likelihood values |
Use NA
to represent unused category.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | with(model_gpcm_gendata(10, 5, 3), model_gpcm_prob(t, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_info(t, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_lh(u, t, a, b, d))
model_gpcm_gendata(10, 5, 3)
model_gpcm_gendata(10, 5, 3, missing=.1)
# Figure 1 in Muraki, 1992 (APM)
b <- matrix(c(-2,0,2,-.5,0,2,-.5,0,2), nrow=3, byrow=TRUE)
model_gpcm_plot(a=c(1,1,.7), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert_d0=0)
# Figure 2 in Muraki, 1992 (APM)
b <- matrix(c(.5,0,NA,0,0,0), nrow=2, byrow=TRUE)
model_gpcm_plot(a=.7, b=rowMeans(b, na.rm=TRUE), d=rowMeans(b, na.rm=TRUE)-b, D=1.0, insert_d0=0)
# Figure 3 in Muraki, 1992 (APM)
b <- matrix(c(1.759,-1.643,3.970,-2.764), nrow=2, byrow=TRUE)
model_gpcm_plot(a=c(.778,.946), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert_d0=0)
# Figure 1 in Muraki, 1993 (APM)
b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE)
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0)
# Figure 2 in Muraki, 1993 (APM)
b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE)
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0, type='info', by_item=TRUE)
with(model_gpcm_gendata(5, 50, 3), model_gpcm_plot_loglh(u, a, b, d))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.