Description Usage Arguments Examples
Estimate the GPCM using the maximum likelihood estimation
model_gpcm_eap_scoring
scores response vectors using the EAP method
model_gpcm_map_scoring
scores response vectors using maximum a posteriori
model_gpcm_estimate_jmle
estimates the parameters using the
joint maximum likelihood estimation (JMLE) method
model_gpcm_estimate_mmle
estimates the parameters using the
marginal maximum likelihood estimation (MMLE) method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | model_gpcm_eap_scoring(u, a, b, d, D = 1.702, prior = c(0, 1),
bound = c(-3, 3))
model_gpcm_map_scoring(u, a, b, d, D = 1.702, prior = NULL,
bound = c(-3, 3), nr_iter = 30, nr_conv = 0.001)
model_gpcm_dv_Pt(t, a, b, d, D)
model_gpcm_dv_Pa(t, a, b, d, D)
model_gpcm_dv_Pb(t, a, b, d, D)
model_gpcm_dv_Pd(t, a, b, d, D)
model_gpcm_dv_jmle(ix, dvp)
model_gpcm_estimate_jmle(u, t = NA, a = NA, b = NA, d = NA,
D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001,
scale = c(0, 1), bounds_t = c(-4, 4), bounds_a = c(0.01, 2),
bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0,
1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1,
debug = FALSE, true_params = NULL)
model_gpcm_dv_mmle(u_ix, quad, pdv)
model_gpcm_estimate_mmle(u, t = NA, a = NA, b = NA, d = NA,
D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001,
bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4),
bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b =
c(0, 1), d = c(0, 1)), decay = 1, quad_degree = "11",
scoring = c("eap", "map"), debug = FALSE, true_params = NULL)
model_gpcm_fitplot(u, t, a, b, d, D = 1.702, insert_d0 = NULL,
index = NULL, intervals = seq(-3, 3, 0.5), show_points = TRUE)
|
u |
the observed response matrix, 2d matrix |
a |
discrimination parameters, 1d vector (fixed value) or NA (freely estimate) |
b |
difficulty parameters, 1d vector (fixed value) or NA (freely estimate) |
d |
category parameters, 2d matrix (fixed value) or NA (freely estimate) |
D |
the scaling constant, 1.702 by default |
prior |
the prior distribution |
nr_iter |
the maximum iterations of newton-raphson |
nr_conv |
the convegence criterion for newton-raphson |
t |
ability parameters, 1d vector (fixed value) or NA (freely estimate) |
ix |
the 3d indices |
dvp |
the derivatives of P |
iter |
the maximum iterations |
conv |
the convergence criterion of the -2 log-likelihood |
scale |
the scale of theta parameters |
bounds_t |
bounds of ability parameters |
bounds_a |
bounds of discrimination parameters |
bounds_b |
bounds of location parameters |
bounds_d |
bounds of category parameters |
priors |
a list of prior distributions |
decay |
decay rate |
debug |
TRUE to print debuggin information |
true_params |
a list of true parameters for evaluating the estimation accuracy |
quad_degree |
the number of quadrature points |
scoring |
the scoring method: 'eap' or 'map' |
insert_d0 |
insert an initial category value |
index |
the indices of items being plotted |
intervals |
intervals on the x-axis |
show_points |
TRUE to show points |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_eap_scoring(u, a, b, d)$t))
with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_map_scoring(u, a, b, d)$t))
## Not run:
# generate data
x <- model_gpcm_gendata(1000, 40, 3)
# free calibration
y <- model_gpcm_estimate_jmle(x$u, true_params=x)
# no priors
y <- model_gpcm_estimate_jmle(x$u, priors=NULL, true_params=x)
## End(Not run)
## Not run:
# generate data
x <- model_gpcm_gendata(1000, 40, 3)
# free estimation
y <- model_gpcm_estimate_mmle(x$u, true_params=x)
# no priors
y <- model_gpcm_estimate_mmle(x$u, priors=NULL, true_params=x)
## End(Not run)
with(model_gpcm_gendata(1000, 20, 3), model_gpcm_fitplot(u, t, a, b, d, index=c(1, 3, 5)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.