Description Usage Arguments Examples
Routine functions for the GRM
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | model_grm_prob(t, a, b, D = 1.702, raw = FALSE)
model_grm_info(t, a, b, D = 1.702)
model_grm_lh(u, t, a, b, D = 1.702, log = FALSE)
model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
  D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
  0.8), missing = NULL)
model_grm_rescale(t, a, b, param = c("t", "b"), mean = 0, sd = 1)
model_grm_plot(a, b, D = 1.702, type = c("prob", "info"),
  by_item = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1),
  raw = FALSE)
model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1),
  show_mle = FALSE)
 | 
| t | ability parameters, 1d vector | 
| a | discrimination parameters, 1d vector | 
| b | item location parameters, 2d matrix | 
| D | the scaling constant, 1.702 by default | 
| raw | TRUE to return P* | 
| u | the observed scores (starting from 0), 2d matrix | 
| log | TRUE to return log-likelihood | 
| n_p | the number of people to be generated | 
| n_i | the number of items to be generated | 
| n_c | the number of score categories | 
| t_dist | parameters of the normal distribution used to generate t-parameters | 
| a_dist | parameters of the lognormal distribution used to generate a-parameters | 
| b_dist | parameters of the normal distribution used to generate b-parameters | 
| missing | the proportion or number of missing responses | 
| param | the parameter of the new scale: 't' or 'b' | 
| mean | the mean of the new scale | 
| sd | the standard deviation of the new scale | 
| type | the type of plot, prob for ICC and info for IIFC | 
| by_item | TRUE to combine categories | 
| total | TRUE to sum values over items | 
| xaxis | the values of x-axis | 
| show_mle | TRUE to print maximum likelihood values | 
| 1 2 3 4 5 6 7 8 | with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b))
model_grm_gendata(10, 5, 3)
model_grm_gendata(10, 5, 3, missing=.1)
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob'))
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', by_item=TRUE))
with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.