Nothing
test_that("Two class", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_equal(
j_index(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
(231 / 258) + (54 / 86) - 1
)
expect_equal(
j_index(path_tbl)[[".estimate"]],
(231 / 258) + (54 / 86) - 1
)
expect_equal(
j_index(pathology, pathology, scan)[[".estimate"]],
(231 / 258) + (54 / 86) - 1
)
})
test_that("`event_level = 'second'` works", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
j_index_vec(df$pathology, df$scan),
j_index_vec(df_rev$pathology, df_rev$scan, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Three class", {
multi_ex <- data_three_by_three()
micro <- data_three_by_three_micro()
expect_equal(
j_index(multi_ex, estimator = "macro")[[".estimate"]],
macro_metric(j_index_binary)
)
expect_equal(
j_index(multi_ex, estimator = "macro_weighted")[[".estimate"]],
macro_weighted_metric(j_index_binary)
)
expect_equal(
j_index(multi_ex, estimator = "micro")[[".estimate"]],
with(micro, sum(tp) / sum(p) + sum(tn) / sum(n) - 1)
)
})
# ------------------------------------------------------------------------------
test_that("two class with case weights is correct", {
df <- data.frame(
truth = factor(c("x", "x", "y"), levels = c("x", "y")),
estimate = factor(c("x", "y", "x"), levels = c("x", "y")),
case_weights = c(1L, 10L, 2L)
)
expect_identical(
j_index(df, truth, estimate, case_weights = case_weights)[[".estimate"]],
-10 / 11
)
})
# ------------------------------------------------------------------------------
test_that("Binary `j_index()` returns `NA` with a warning when sensitivity is undefined (tp + fn = 0) (#265)", {
levels <- c("a", "b")
truth <- factor(c("b", "b"), levels = levels)
estimate <- factor(c("a", "b"), levels = levels)
expect_snapshot(
out <- j_index_vec(truth, estimate)
)
expect_identical(out, NA_real_)
})
test_that("Binary `j_index()` returns `NA` with a warning when specificity is undefined (tn + fp = 0) (#265)", {
levels <- c("a", "b")
truth <- factor("a", levels = levels)
estimate <- factor("b", levels = levels)
expect_snapshot(
out <- j_index_vec(truth, estimate)
)
expect_identical(out, NA_real_)
})
test_that("Multiclass `j_index()` returns averaged value with `NA`s removed + a warning when sensitivity is undefined (tp + fn = 0) (#265)", {
levels <- c("a", "b", "c")
truth <- factor(c("a", "b", "b"), levels = levels)
estimate <- factor(c("a", "b", "c"), levels = levels)
expect_snapshot(
out <- j_index_vec(truth, estimate)
)
expect_identical(out, 3 / 4)
})
test_that("Multiclass `j_index()` returns averaged value with `NA`s removed + a warning when specificity is undefined (tn + fp = 0) (#265)", {
levels <- c("a", "b", "c")
truth <- factor(c("a", "a", "a"), levels = levels)
estimate <- factor(c("a", "b", "c"), levels = levels)
expect_snapshot(
out <- j_index_vec(truth, estimate)
)
# In this case it removes everything and we get a NaN,
# I can't think of any way to get a spec warning and not have this
expect_identical(out, NaN)
})
test_that("`NA` is still returned if there are some undefined sensitivity values but `na_rm = FALSE`", {
levels <- c("a", "b", "c")
truth <- factor(c("a", "b", "b"), levels = levels)
estimate <- factor(c("a", NA, "c"), levels = levels)
expect_equal(j_index_vec(truth, estimate, na_rm = FALSE), NA_real_)
expect_warning(j_index_vec(truth, estimate, na_rm = FALSE), NA)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
j_index_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
j_index_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
j_index_vec(fct_truth, cp_estimate),
j_index_vec(fct_truth, fct_estimate)
)
expect_identical(
j_index_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
j_index_vec(cp_truth, cp_estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.