Nothing
.loglikexzp <- function(param, N, values, freq) {
alpha <- param[1]
beta <- param[2]
# print(c(alpha, beta))
zeta_a <- VGAM::zeta(alpha)
val1 <-
sum(sapply(base::seq_along(values), function(i, alpha, values, freq) {
# sum(sapply(1:length(values), function(i, alpha, values, freq) {
freq[i] * .zeta_x(alpha, values[i])
}, alpha = alpha, values = values, freq = freq))
# val2 <- sum(sapply(1:length(values),
val2 <- sum(sapply(base::seq_along(values),
function(i, alpha, beta, values, freq) {
freq[i] * log(exp((beta * values[i] ^ (-alpha)) / (zeta_a)) - 1)
},
alpha = alpha, beta = beta, values = values, freq = freq))
- ((beta * (N - zeta_a ^ (-1) * val1) + val2) - (N * log(exp(beta) - 1)))
}
.loglik3 <- function(param, N, values, freq){
alpha <- param[1]
beta <- param[2]
-sum(sapply(base::seq_along(values),
function(i, alpha, beta, values, freq) {
freq[i] * log(dzipfpe(values[i], alpha, beta))
}, alpha = alpha, beta = beta, values = values, freq = freq))
}
.loglik4 <- function(param, N, values, freq) {
alpha <- param[1]
beta <- param[2]
val <- sum(sapply(base::seq_along(values),
function(i, alpha, beta, values, freq){
freq[i] * log((exp((beta*values[i]^(-alpha))/VGAM::zeta(alpha)) -1)/(exp(beta) - 1))
}, alpha = alpha, beta = beta, values = values, freq = freq))
val1 <- sum(sapply(base::seq_along(values),function(i, alpha, values, freq){
freq[i] * .zeta_x(alpha, values[i])
}, alpha = alpha, values = values, freq = freq))
-(beta*(N - VGAM::zeta(alpha)^(-1)*val1) + val)
}
#' Zipf-PE parameters estimation.
#'
#' For a given sample of strictly positive integer values, usually of the type of ranking data or
#' frequencies of frequencies data, estimates the parameters of the Zipf-PE
#' distribution by means of the maximum likelihood method. The input data should be provided as a frequency matrix.
#'
#' @param data Matrix of count data in form of table of frequencies.
#' @param init_alpha Initial value of \eqn{\alpha} parameter (\eqn{\alpha > 1}).
#' @param init_beta Initial value of \eqn{\beta} parameter (\eqn{\beta \in (-\infty, +\infty)}).
#' @param level Confidence level used to calculate the confidence intervals (default 0.95).
#' @param object An object from class "zpeR" (output of \emph{zipfpeFit} function).
#' @param x An object from class "zpeR" (output of \emph{zipfpeFit} function).
#' @param ... Further arguments to the generic functions.The extra arguments are passing
#' to the \emph{\link{optim}} function.
#' @details
#' The argument \code{data} is a two column matrix with the first column containing the observations and
#' the second column containing their frequencies.
#'
#' The log-likelihood function is equal to:
#'
#' \deqn{l(\alpha, \beta; x) = \beta\, (N - \zeta(\alpha)^{-1}\, \sum_{i = 1} ^m f_{a}(x_{i})\, \zeta(\alpha, x_i)) +
#' \sum_{i = 1} ^m f_{a}(x_{i})\, log \left( \frac{e^{\frac{\beta\, x_{i}^{-\alpha}}{\zeta(\alpha)}} - 1}{e^{\beta} - 1} \right), }
#' where \eqn{f_{a}(x_i)} is the absolute frequency of \eqn{x_i}, \eqn{m} is the number of different values in the sample and \eqn{N} is the sample size,
#' i.e. \eqn{N = \sum_{i = 1} ^m x_i f_a(x_i)}.
#'
#' By default the initial values of the parameters are computed using the function \code{getInitialValues}.
#'
#' The function \emph{\link{optim}} is used to estimate the parameters.
#' @return Returns an object composed by the maximum likelihood parameter estimations
#' jointly with their standard deviation and confidence intervals. It also contains
#' the value of the log-likelihood at the maximum likelihood estimator.
#' @examples
#' data <- rzipfpe(100, 2.5, 1.3)
#' data <- as.data.frame(table(data))
#' data[,1] <- as.numeric(as.character(data[,1]))
#' data[,2] <- as.numeric(as.character(data[,2]))
#' initValues <- getInitialValues(data, model='zipfpe')
#' obj <- zipfpeFit(data, init_alpha = initValues$init_alpha, init_beta = initValues$init_beta)
#' @seealso \code{\link{getInitialValues}}.
#' @export
zipfpeFit <- function(data, init_alpha = NULL, init_beta = NULL, level = 0.95, ...){
Call <- match.call()
if(is.null(init_alpha) || is.null(init_beta)){
initValues <- getInitialValues(data, model = 'zipfpe')
init_alpha <- initValues$init_alpha
init_beta <- initValues$init_beta
}
if(!is.numeric(init_alpha) || !is.numeric(init_beta)){
stop('Wrong intial values for the parameters.')
}
tryCatch({
res <- stats::optim(par = c(init_alpha, init_beta), .loglik4, N = sum(as.numeric(data[,2])),
values = as.numeric(as.character(data[, 1])), freq = data[, 2],
hessian = TRUE, ...)
estAlpha <- as.numeric(res$par[1])
estBeta <- as.numeric(res$par[2])
paramSD <- sqrt(diag(solve(res$hessian)))
paramsCI <- .getConfidenceIntervals(paramSD, estAlpha, estBeta, level)
structure(class = "zipfpeR", list(alphaHat = estAlpha,
betaHat = estBeta,
alphaSD = paramSD[1],
betaSD = paramSD[2],
alphaCI = c(paramsCI[1,1],paramsCI[1,2]),
betaCI = c(paramsCI[2,1],paramsCI[2,2]),
logLikelihood = -res$value,
hessian=res$hessian,
call = Call))
}, error = function(e) {
print(c("Error", e))
})
}
#' @rdname zipfpeFit
#' @export
residuals.zipfpeR <- function(object, ...){
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
residual.values <- dataMatrix[, 2] - fitted(object)
return(residual.values)
}
#' @rdname zipfpeFit
#' @export
fitted.zipfpeR <- function(object, ...) {
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
N <- sum(dataMatrix[, 2])
fitted.values <- N*sapply(dataMatrix[,1], dzipfpe, alpha = object[['alphaHat']],
beta = object[['betaHat']])
return(fitted.values)
}
#' @rdname zipfpeFit
#' @export
coef.zipfpeR <- function(object, ...){
estimation <- matrix(nrow = 2, ncol = 4)
estimation[1, ] <- c(object[['alphaHat']], object[['alphaSD']], object[['alphaCI']][1], object[['alphaCI']][2])
estimation[2, ] <- c(object[['betaHat']], object[['betaSD']], object[['betaCI']][1], object[['betaCI']][2])
colnames(estimation) <- c("MLE", "Std. Dev.", paste0("Inf. ", "95% CI"),
paste0("Sup. ", "95% CI"))
rownames(estimation) <- c("alpha", "beta")
estimation
}
#' @rdname zipfpeFit
#' @export
plot.zipfpeR <- function(x, ...){
dataMatrix <- get(as.character(x[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
graphics::plot(dataMatrix[,1], dataMatrix[,2], log="xy",
xlab="Observation", ylab="Frequency",
main="Fitting Zipf-PE Distribution", ...)
graphics::lines(dataMatrix[,1], fitted(x), col="blue")
graphics::legend("topright", legend = c('Observations', 'Zipf-PE Distribution'),
col=c('black', 'blue'), pch=c(21,NA),
lty=c(NA, 1), lwd=c(NA, 2))
}
#' @rdname zipfpeFit
#' @export
print.zipfpeR <- function(x, ...){
cat('Call:\n')
print(x[['call']])
cat('\n')
cat('Initial Values:\n')
cat(sprintf('Alpha: %s\n', format(eval(x[['call']]$init_alpha), digits = 3)))
cat(sprintf('Beta: %s\n', format(eval(x[['call']]$init_beta), digits = 3)))
cat('\n')
cat('Coefficients:\n')
print(coef(x))
cat('\n')
cat('Metrics:\n')
cat(sprintf('Log-likelihood: %s\n', logLik(x)))
cat(sprintf('AIC: %s\n', AIC(x)))
cat(sprintf('BIC: %s\n', BIC(x)))
}
#' @rdname zipfpeFit
#' @export
summary.zipfpeR <- function(object, ...){
print(object)
cat('\n')
cat('Fitted values:\n')
print(fitted(object))
}
#' @rdname zipfpeFit
#' @export
logLik.zipfpeR <- function(object, ...){
if(!is.na(object[['logLikelihood']]) || !is.null(object[['logLikelihood']])){
return(object[['logLikelihood']])
}
return(NA)
}
#' @rdname zipfpeFit
#' @export
AIC.zipfpeR <- function(object, ...){
aic <- .get_AIC(object[['logLikelihood']], 2)
return(aic)
}
#' @rdname zipfpeFit
#' @export
BIC.zipfpeR <- function(object, ...){
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
bic <- .get_BIC(object[['logLikelihood']], 2, sum(dataMatrix[, 2]))
return(bic)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.