# nolint start
#####################################################################################
## Author: Daniel Sabanes Bove [sabanesd *a*t* roche *.* com]
## Project: Object-oriented implementation of CRM designs
##
## Time-stamp: <[combo.R] by DSB Sam 07/03/2015 21:58>
##
## Description:
## Test the combo stuff. For development only!!
##
## History:
## 25/01/2015 file creation
###################################################################################
source("../R/helpers.R")
source("../R/Data-class.R")
## create some test data
data <- DataCombo(x=
cbind(a=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
b=c(20, 20, 20, 40, 40, 40, 50, 50)),
y=c(0, 0, 0, 1, 0, 0, 1, 1),
doseGrid=
list(a=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)),
b=seq(from=10, to=80, by=10)))
data
data@nGrid
data@nObs
## now test updating and plotting the data
source("../R/Data-methods.R")
## updating:
data2 <- update(data,
x=c(a=0.5, b=30),
y=c(0, 1, 0, 0))
## plotting:
library(ggplot2)
x11()
plot(data)
## load model code
source("../R/Model-class.R")
## define the model
model <- ComboLogistic(singlePriors=
list(a=
LogisticLogNormal(mean=c(0, 1),
cov=diag(2),
refDose=10),
b=
LogisticLogNormal(mean=c(1, 2),
cov=diag(2),
refDose=20)),
gamma=0,
tau=0.4)
## try sampling from the model:
source("../R/McmcOptions-class.R")
source("../R/McmcOptions-methods.R")
## and some MCMC options
options <- McmcOptions(burnin=10000,
step=2,
samples=50000)
source("../R/mcmc.R")
source("../R/helpers.R")
source("../R/Samples-class.R")
## obtain the samples
library(rjags)
samples <- mcmc(data, model, options, verbose=TRUE)
str(samples)
source("../R/Samples-methods.R")
## use the ggmcmc package for convergence checks. we provide the extract function
## for this purpose:
library(ggmcmc)
alpha0samples <- get(samples, "alpha0")
ggs_traceplot(alpha0samples)
alpha1samples <- get(samples, "alpha1")
ggs_traceplot(alpha1samples)
ggs_traceplot(get(samples, "eta"))
## ok now we want to plot the fit:
source("../R/Model-methods.R")
## test C++ inline. requires MinGW installation and path settings,
## see http://stackoverflow.com/questions/23458841/how-to-get-rcpp-to-work
library(Rcpp)
cppFunction('
int fibonacci(const int x) {
if (x < 2)
return x;
else
return (fibonacci(x - 1)) + fibonacci(x - 2);
}
')
fibonacci(5)
## todo: cont here
system.time(print(plot(samples, model, data, focus=c("a", "b"))))
## old:
## user system elapsed
## 73.40 0.25 73.74
## new:
## user system elapsed
## 5.27 0.20 5.51
## after first run even slightly faster:
## user system elapsed
## 4.87 0.15 5.02
## ==> ~15 times faster with C++!
## nice!
x11()
plot(samples, model, data, extrapolate=FALSE)
betaModList <- list(betaMod = rbind(c(1,1), c(1.5,0.75), c(0.8,2.5), c(0.4,0.9)))
plotModels(betaModList, c(0,1), base = 0, maxEff = 1, scal = 1.2)
## now on to the rules:
source("../R/helpers.R")
source("../R/Rules-class.R")
source("../R/Rules-methods.R")
## target level is 90% of maximum biomarker level
## overdose tox interval is 35%+
myNextBest <- new("NextBestDualEndpoint",
target=0.9,
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
nextDose <- nextBest(myNextBest, doselimit=50, samples=samples, model=model, data=data)
nextDose$plot
nextDose$value
data
## stopping rule:
## min 3 cohorts and at least 50% prob in for targeting biomarker,
## or max 20 patients
myStopping1 <- new("StoppingMinCohorts",
nCohorts=3L)
myStopping2 <- new("StoppingMaxPatients",
nPatients=50L)
myStopping3 <- new("StoppingTargetBiomarker",
target=0.9,
prob=0.5)
## you can either write this:
myStopping <- new("StoppingAny",
stopList=
list(new("StoppingAll",
stopList=
list(myStopping1,
myStopping3)),
myStopping2))
## or much more intuitively:
myStoppingEasy <- (myStopping1 & myStopping3) | myStopping2
myStoppingEasy
identical(myStopping, myStoppingEasy)
stopTrial(myStopping, dose=nextDose$value,
samples, model, data)
## relative increments:
myIncrements <- new("IncrementsRelative",
intervals=c(0, 20, Inf),
increments=c(1, 0.33))
## test design
source("../R/Design-class.R")
design <- new("DualDesign",
model=model,
nextBest=myNextBest,
stopping=myStopping,
increments=myIncrements,
data=
new("DataDual",
x=numeric(),
y=integer(),
w=numeric(),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2))),
cohortSize=new("CohortSizeConst", size=3L),
startingDose=6)
## for testing the simulate function:
## object <- design
## truth <- model@prob
## ## args <- list(rho0=0.1,
## ## gamma=20)
## args <- list(alpha0=0,
## alpha1=1)
## nsim <- 10L
mcmcOptions <- new("McmcOptions")
seed <- 23
## iterSim <- 1L
source("../R/Simulations-class.R")
source("../R/Design-methods.R")
betaMod <-
function (dose, e0, eMax, delta1, delta2, scal)
{
maxDens <- (delta1^delta1) * (delta2^delta2)/((delta1 + delta2)^(delta1 +
delta2))
dose <- dose/scal
e0 + eMax/maxDens * (dose^delta1) * (1 - dose)^delta2
}
##trace(simulate, browser, signature=c("DualDesign"))
trueTox <- function(dose){
pnorm((dose-60)/10)
}
trueBiomarker <- function(dose){
betaMod(dose, e0=0.2, eMax=0.6, delta1=5, delta2=5 * 0.5 / 0.5, scal=100)
}
mySims <- simulate(design,
trueTox=trueTox,
trueBiomarker=trueBiomarker,
sigma2W=0.001,
rho=0,
nsim=3L,
firstSeparate=FALSE,
parallel=FALSE,
seed=3)
source("../R/Simulations-methods.R")
str(mySims, 2)
str(mySims@fitBiomarker, 2)
identical(mySims@fitBiomarker[[1]],
mySims@fitBiomarker[[2]])
identical(mySims@fitBiomarker[[2]],
mySims@fitBiomarker[[3]])
plot(mySims@fitBiomarker[[1]]$middleBiomarker, type="l")
mySims@stopReasons
plot(mySims, type=c("dose", "rho"))
plot(mySims)
## look at simulated trial outcomes:
plot(mySims@data[[2]])
mySims@stopReasons[[3]]
## final MTDs
mySims@doses
## extract operating characteristics
## the truth we want to compare it with:
sumOut <- summary(mySims,
trueTox=trueTox,
trueBiomarker=trueBiomarker)
sumOut
mySims@doses
## make nice plots for simulation output:
## first from the summary object
str(sumOut)
plot(sumOut)
plot(sumOut, type="meanFit")
plot(sumOut, type=c("nObs", "meanFit"))
## now from the raw simulation output
str(mySims@data)
plot(mySims)
# nolint end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.