#####################################################################################
## Author: Daniel Sabanes Bove [sabanesd *a*t* roche *.* com]
## Project: Object-oriented implementation of CRM designs
##
## Time-stamp: <[dualPackage.R] by DSB Fre 06/03/2015 14:04>
##
## Description:
## Test the dual endpoint stuff. For development only!!
##
## History:
## 24/03/2014 file creation
## 22/12/2014 test the new JAGS implementation
###################################################################################
library(crmPack)
## set up the model
model <- DualEndpointRW(mu=c(0, 1),
Sigma=matrix(c(1, 0, 0, 1), nrow=2),
sigma2betaW=
0.01,
## c(a=20, b=50), ## gives very unstable results!!
sigma2W=
c(a=0.1, b=0.1),
rho=
c(a=1, b=1),
## c(a=20, b=10)
smooth="RW1")
model <-
DualEndpointBeta(E0=0.001,
Emax=c(0.51, 1.5),
delta1=c(0, 100),
mode=c(0, 90),
refDose=100,
mu=c(0, 1),
Sigma=matrix(c(1, 0, 0, 1), nrow=2),
sigma2W=
c(a=0.1, b=0.1),
rho=
c(a=1, b=1))
library(DoseFinding)
curve(betaMod(x, e0=0.2, eMax=0.6, delta1=5, delta2=5 * 0.9 / 0.1, scal=100),
from=0, to=50)
curve(betaMod(x, e0=0.2, eMax=0.6, delta1=1, delta2=1 * 0.9 / 0.1, scal=100),
from=0, to=50)
## create some test data
data <- DataDual(
x=
c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10,
20, 20, 20, 40, 40, 40, 50, 50, 50),
y=
c(0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1),
w=
c(0.3, 0.4, 0.5, 0.4, 0.6, 0.7, 0.5, 0.6,
0.5, 0.5, 0.55, 0.4, 0.41, 0.39, 0.3, 0.3, 0.2),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
data
data@nGrid
data@nObs
help("DataDual-class", help="html")
plot(data)
## and some MCMC options
options <- McmcOptions(burnin=10000,
step=2,
samples=50000)
## obtain the samples
samples <- mcmc(data, model, options, verbose=TRUE)
str(samples)
plot(samples@data$betaW[, 40], type="l")
plot(samples@data$betaW[, 30], type="l")
## ok, so we don't have convergence for RW2 at least with JAGS!
## there is convergence with WinBUGS however.
## use the ggmcmc package for convergence checks. we provide the get method
## for this purpose:
library(ggmcmc)
library(crmPack)
betaZ <- get(samples, "betaZ")
str(betaZ)
ggs_traceplot(betaZ)
ggs_density(betaZ)
ggs_autocorrelation(betaZ)
ggs_running(betaZ)
mode <- get(samples, "mode")
ggs_traceplot(mode)
delta1 <- get(samples, "delta1")
ggs_traceplot(delta1)
E0 <- get(samples, "E0")
ggs_traceplot(E0)
Emax <- get(samples, "Emax")
ggs_traceplot(Emax)
ggs_traceplot(get(samples, "precW"))
betaW <- get(samples, "betaW")
str(betaW)
ggs_traceplot(betaW)
rho <- get(samples, "rho")
ggs_traceplot(rho)
plot(rho)
ggs_histogram(rho)
## ok now we want to plot the fit:
plot(samples, model, data)
x11()
plot(samples, model, data, extrapolate=FALSE)
betaModList <- list(betaMod = rbind(c(1,1), c(1.5,0.75), c(0.8,2.5), c(0.4,0.9)))
plotModels(betaModList, c(0,1), base = 0, maxEff = 1, scal = 1.2)
## now on to the rules:
## target level is 90% of maximum biomarker level
## overdose tox interval is 35%+
myNextBest <- new("NextBestDualEndpoint",
target=0.9,
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
nextDose <- nextBest(myNextBest, doselimit=50, samples=samples, model=model, data=data)
nextDose$plot
nextDose$value
data
## stopping rule:
## min 3 cohorts and at least 50% prob in for targeting biomarker,
## or max 20 patients
myStopping1 <- new("StoppingMinCohorts",
nCohorts=3L)
myStopping2 <- new("StoppingMaxPatients",
nPatients=50L)
myStopping3 <- new("StoppingTargetBiomarker",
target=0.9,
prob=0.5)
## you can either write this:
myStopping <- new("StoppingAny",
stopList=
list(new("StoppingAll",
stopList=
list(myStopping1,
myStopping3)),
myStopping2))
## or much more intuitively:
myStoppingEasy <- (myStopping1 & myStopping3) | myStopping2
myStoppingEasy
identical(myStopping, myStoppingEasy)
stopTrial(myStopping, dose=nextDose$value,
samples, model, data)
## relative increments:
myIncrements <- new("IncrementsRelative",
intervals=c(0, 20, Inf),
increments=c(1, 0.33))
## test design
design <- new("DualDesign",
model=model,
nextBest=myNextBest,
stopping=myStopping,
increments=myIncrements,
data=
new("DataDual",
x=numeric(),
y=integer(),
w=numeric(),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2))),
cohortSize=new("CohortSizeConst", size=3L),
startingDose=6)
## for testing the simulate function:
## object <- design
## truth <- model@prob
## ## args <- list(rho0=0.1,
## ## gamma=20)
## args <- list(alpha0=0,
## alpha1=1)
## nsim <- 10L
mcmcOptions <- new("McmcOptions")
seed <- 23
## iterSim <- 1L
betaMod <-
function (dose, e0, eMax, delta1, delta2, scal)
{
maxDens <- (delta1^delta1) * (delta2^delta2)/((delta1 + delta2)^(delta1 +
delta2))
dose <- dose/scal
e0 + eMax/maxDens * (dose^delta1) * (1 - dose)^delta2
}
##trace(simulate, browser, signature=c("DualDesign"))
trueTox <- function(dose){
pnorm((dose-60)/10)
}
trueBiomarker <- function(dose){
betaMod(dose, e0=0.2, eMax=0.6, delta1=5, delta2=5 * 0.5 / 0.5, scal=100)
}
mySims <- simulate(design,
trueTox=trueTox,
trueBiomarker=trueBiomarker,
sigma2W=0.001,
rho=0,
nsim=3L,
firstSeparate=FALSE,
parallel=TRUE,
seed=3)
str(mySims, 2)
str(mySims@fitBiomarker, 2)
plot(mySims@fitBiomarker[[1]]$middleBiomarker, type="l")
mySims@stopReasons
plot(mySims, type=c("dose", "rho"))
plot(mySims)
## look at simulated trial outcomes:
plot(mySims@data[[2]])
mySims@stopReasons[[3]]
## final MTDs
mySims@doses
## get operating characteristics
## the truth we want to compare it with:
sumOut <- summary(mySims,
trueTox=trueTox,
trueBiomarker=trueBiomarker)
sumOut
mySims@doses
## make nice plots for simulation output:
## first from the summary object
str(sumOut)
plot(sumOut)
plot(sumOut, type="meanFit")
plot(sumOut, type=c("nObs", "meanFit"))
## now from the raw simulation output
str(mySims@data)
plot(mySims)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.