brainAge: BrainAGE

View source: R/brainAge.R

brainAgeR Documentation

BrainAGE

Description

Estimate BrainAge from a T1-weighted MR image using the DeepBrainNet architecture and weights described here:

Usage

brainAge(
  image,
  doPreprocessing = TRUE,
  numberOfSimulations = 0,
  sdAffine = 0.01,
  verbose = TRUE
)

Arguments

image

input 3-D T1-weighted brain image.

doPreprocessing

boolean dictating whether prescribed preprocessing is performed (brain extraction, bias correction, normalization to template).

numberOfSimulations

number of random affine perturbations to transform the input.

sdAffine

define the standard deviation of the affine transformation parameter for the simulations.

verbose

print progress.

Details

https://github.com/vishnubashyam/DeepBrainNet

and described in the following article:

https://pubmed.ncbi.nlm.nih.gov/32591831/

Preprocessing on the training data consisted of:

  • n4 bias correction,

  • brain extraction, and

  • affine registration to MNI. The input T1 should undergo the same steps. If the input T1 is the raw T1, these steps can be performed by the internal preprocessing, i.e. set doPreprocessing = TRUE

Value

predicted age and binned confidence values

Author(s)

Tustison NJ

Examples

## Not run: 
library( ANTsRNet )
library( keras )

image <- antsImageRead( "t1w_image.nii.gz" )
estimatedBrainAge <- brainAge( image )

## End(Not run)

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.