View source: R/createDenseUnetModel.R
createDenseUnetModel3D | R Documentation |
Creates a keras model of the dense U-net deep learning architecture for image segmentation
createDenseUnetModel3D(
inputImageSize,
numberOfOutputs = 1L,
numberOfLayersPerDenseBlock = c(3, 4, 12, 8),
growthRate = 48,
initialNumberOfFilters = 96,
reductionRate = 0,
depth = 7,
dropoutRate = 0,
weightDecay = 1e-04,
mode = c("classification", "regression")
)
inputImageSize |
Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). |
numberOfOutputs |
Meaning depends on the |
numberOfLayersPerDenseBlock |
number of dense blocks per layer. |
growthRate |
number of filters to add for each dense block layer (default = 48). |
initialNumberOfFilters |
number of filters at the beginning (default = 96). |
reductionRate |
reduction factor of transition blocks |
depth |
number of layers—must be equal to 3 * N + 4 where N is an integer (default = 7). |
dropoutRate |
drop out layer rate (default = 0.2). |
weightDecay |
weight decay (default = 1e-4). |
mode |
A switch to determine the activation function to use.
If |
X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, P.-A. Heng. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes
available here:
https://arxiv.org/pdf/1709.07330.pdf
with the author's implementation available at:
https://github.com/xmengli999/H-DenseUNet
an DenseUnet keras model
Tustison NJ
library( ANTsRNet )
library( keras )
model <- createDenseUnetModel3D( c( 64, 64, 64, 1 ) )
metric_multilabel_dice_coefficient <-
custom_metric( "multilabel_dice_coefficient",
multilabel_dice_coefficient )
loss_dice <- function( y_true, y_pred ) {
-multilabel_dice_coefficient(y_true, y_pred)
}
attr(loss_dice, "py_function_name") <- "multilabel_dice_coefficient"
model %>% compile( loss = loss_dice,
optimizer = optimizer_adam( lr = 0.0001 ),
metrics = c( metric_multilabel_dice_coefficient,
metric_categorical_crossentropy ) )
print( model )
rm(model); gc()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.