View source: R/brainTumorSegmentation.R
brainTumorSegmentation | R Documentation |
Perform brain tumor probabilistic segmentation given pre-aligned FLAIR, T1, T1 contrast, and T2 images. Note that the underlying model is 3-D and requires images to be of > 64 voxels in each dimension.
brainTumorSegmentation(
flair,
t1,
t1Contrast,
t2,
predictionBatchSize = 16,
patchStrideLength = 32,
doPreprocessing = TRUE,
verbose = FALSE
)
flair |
input 3-D FLAIR brain image (not skull-stripped). |
t1 |
input 3-D T1-weighted brain image (not skull-stripped). |
t1Contrast |
input 3-D T1-weighted contrast brain image (not skull-stripped). |
t2 |
input 3-D T2-weighted brain image (not skull-stripped). |
predictionBatchSize |
Control memory usage for prediction. More consequential for GPU-usage. |
patchStrideLength |
3-D vector or int. Dictates the stride length for accumulating predicting patches. |
doPreprocessing |
perform n4 bias correction, intensity truncation, brain extraction. |
verbose |
print progress. |
Brain tumor segmentation probability images (4 tumor tissue types).
Tustison NJ
## Not run:
library( ANTsRNet )
library( keras )
t1 <- antsImageRead( "t1.nii.gz" )
flair <- antsImageRead( "flair.nii.gz" )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.