brainTumorSegmentation: Brain tumor probabilistic segmentation

View source: R/brainTumorSegmentation.R

brainTumorSegmentationR Documentation

Brain tumor probabilistic segmentation

Description

Perform brain tumor probabilistic segmentation given pre-aligned FLAIR, T1, T1 contrast, and T2 images. Note that the underlying model is 3-D and requires images to be of > 64 voxels in each dimension.

Usage

brainTumorSegmentation(
  flair,
  t1,
  t1Contrast,
  t2,
  predictionBatchSize = 16,
  patchStrideLength = 32,
  doPreprocessing = TRUE,
  verbose = FALSE
)

Arguments

flair

input 3-D FLAIR brain image (not skull-stripped).

t1

input 3-D T1-weighted brain image (not skull-stripped).

t1Contrast

input 3-D T1-weighted contrast brain image (not skull-stripped).

t2

input 3-D T2-weighted brain image (not skull-stripped).

predictionBatchSize

Control memory usage for prediction. More consequential for GPU-usage.

patchStrideLength

3-D vector or int. Dictates the stride length for accumulating predicting patches.

doPreprocessing

perform n4 bias correction, intensity truncation, brain extraction.

verbose

print progress.

Value

Brain tumor segmentation probability images (4 tumor tissue types).

Author(s)

Tustison NJ

Examples

## Not run: 
library( ANTsRNet )
library( keras )

t1 <- antsImageRead( "t1.nii.gz" )
flair <- antsImageRead( "flair.nii.gz" )

## End(Not run)

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.