View source: R/createDenseNetModel.R
createDenseNetModel2D | R Documentation |
Creates a keras model of the DenseNet deep learning architecture for image recognition based on the paper
createDenseNetModel2D(
inputImageSize,
numberOfOutputs = 1000,
numberOfFilters = 16,
depth = 7,
numberOfDenseBlocks = 1,
growthRate = 12,
dropoutRate = 0.2,
weightDecay = 1e-04,
mode = "classification"
)
inputImageSize |
Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
numberOfOutputs |
Specifies number of units in final layer |
numberOfFilters |
number of filters |
depth |
number of layers—must be equal to 3 * N + 4 where N is an integer (default = 7). |
numberOfDenseBlocks |
number of dense blocks to add to the end (default = 1). |
growthRate |
number of filters to add for each dense block layer (default = 12). |
dropoutRate |
= per drop out layer rate (default = 0.2). |
weightDecay |
= weight decay (default = 1e-4). |
mode |
'classification' or 'regression'. Default = 'classification'. |
G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely Connected Convolutional Networks Networks
available here:
https://arxiv.org/abs/1608.06993
This particular implementation was influenced by the following python implementation:
https://github.com/tdeboissiere/DeepLearningImplementations/blob/master/DenseNet/densenet.py
an DenseNet keras model
Tustison NJ
library( ANTsRNet )
library( keras )
mnistData <- dataset_mnist()
numberOfLabels <- 10
# Extract a small subset for something that can run quickly
X_trainSmall <- mnistData$train$x[1:100,,]
X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) )
Y_trainSmall <- to_categorical( mnistData$train$y[1:100], numberOfLabels )
X_testSmall <- mnistData$test$x[1:10,,]
X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) )
Y_testSmall <- to_categorical( mnistData$test$y[1:10], numberOfLabels )
# We add a dimension of 1 to specify the channel size
inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )
model <- createDenseNetModel2D( inputImageSize = inputImageSize,
numberOfOutputs = numberOfLabels )
model %>% compile( loss = 'categorical_crossentropy',
optimizer = optimizer_adam( lr = 0.0001 ),
metrics = c( 'categorical_crossentropy', 'accuracy' ) )
# Comment out the rest due to travis build constraints
# track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1,
# epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 )
# Now test the model
# testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall )
# predictedData <- model %>% predict( X_testSmall, verbose = 1 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.