createEnhancedDeepSuperResolutionModel2D: 2-D implementation of the EDSR super resolution architecture.

View source: R/createUpDownResNetSuperResolutionModel.R

createEnhancedDeepSuperResolutionModel2DR Documentation

2-D implementation of the EDSR super resolution architecture.

Description

Creates a keras model of the expanded image super resolution deep learning framework based on EDSR.

Usage

createEnhancedDeepSuperResolutionModel2D(
  inputImageSize,
  convolutionKernelSize = c(3, 3),
  numberOfFilters = 256,
  numberOfResidualBlocks = 32,
  scale = 2,
  numberOfLossFunctions = 1,
  numberOfOutputChannels = 1,
  doBatchNormalization = FALSE,
  interpolation = c("bilinear", "nearest", "conv")
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

convolutionKernelSize

a vector specifying the kernel size for convolution.

numberOfFilters

the number of filters for each encoding layer.

numberOfResidualBlocks

the number of residual blocks.

scale

the upsampling amount, 2, 4 or 8

numberOfLossFunctions

the number of data targets, e.g. 2 for 2 targets

numberOfOutputChannels

the number of ouput channels

doBatchNormalization

boolean for include BN in the residual blocks

interpolation

nearest, bilinear or conv for upscaling block

Value

a keras model for EDSR image super resolution

Author(s)

Tustison NJ, Avants BB

Examples

model = createEnhancedDeepSuperResolutionModel2D(c( 28, 28, 1 ))
rm(model); gc()
model = createEnhancedDeepSuperResolutionModel2D(c( 28, 28, 1 ),
doBatchNormalization = TRUE,
interpolation = "conv", scale = 4)
rm(model); gc()
model = createEnhancedDeepSuperResolutionModel2D(c( 28, 28, 1 ),
doBatchNormalization = TRUE,
numberOfLossFunctions = 2,
interpolation = "conv", scale = 8)
rm(model); gc()

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.