View source: R/createConvolutionalAutoencoderModel.R
createConvolutionalAutoencoderModel3D | R Documentation |
Builds a convolutional autoencoder based on the specified array definining the number of units in the encoding branch. Ported to Keras R from the Keras python implementation here:
createConvolutionalAutoencoderModel3D(
inputImageSize,
numberOfFiltersPerLayer = c(32, 64, 128, 10),
convolutionKernelSize = c(5, 5, 5),
deconvolutionKernelSize = c(5, 5, 5)
)
inputImageSize |
vector definining spatial dimensions + channels |
numberOfFiltersPerLayer |
vector defining the number of convolutional filters in the encoding branch per layer |
convolutionKernelSize |
kernel size fo the convolutional filters |
deconvolutionKernelSize |
kernel size fo the convolutional transpose filters |
https://github.com/XifengGuo/DCEC
two models: the convolutional encoder and convolutional auto-encoder
Tustison NJ
library( ANTsRNet )
library( keras )
ae <- createConvolutionalAutoencoderModel2D( c( 32, 32, 1 ) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.