createAlexNetModel2D: 2-D implementation of the AlexNet deep learning architecture.

View source: R/createAlexNetModel.R

createAlexNetModel2DR Documentation

2-D implementation of the AlexNet deep learning architecture.

Description

Creates a keras model of the AlexNet deep learning architecture for image recognition based on the paper

Usage

createAlexNetModel2D(
  inputImageSize,
  numberOfOutputs = 1000,
  numberOfDenseUnits = 4096,
  dropoutRate = 0,
  mode = c("classification", "regression"),
  batch_size = NULL
)

Arguments

inputImageSize

Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori.

numberOfOutputs

Number of segmentation labels.

numberOfDenseUnits

number of dense units.

dropoutRate

optional regularization parameter between ⁠[0, 1]⁠. Default = 0.0.

mode

'classification' or 'regression'.

batch_size

batch size to pass to first layer

Details

A. Krizhevsky, and I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks.

available here:

    http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

This particular implementation was influenced by the following python implementation:

    https://github.com/duggalrahul/AlexNet-Experiments-Keras/
    https://github.com/lunardog/convnets-keras/

Value

an AlexNet keras model

Author(s)

Tustison NJ

Examples


library( ANTsRNet )
library( keras )


mnistData <- dataset_mnist()
numberOfLabels <- 10

# Extract a small subset for something that can run quickly

X_trainSmall <- mnistData$train$x[1:10,,]
X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) )
Y_trainSmall <- to_categorical( mnistData$train$y[1:10], numberOfLabels )

X_testSmall <- mnistData$test$x[1:10,,]
X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) )
Y_testSmall <- to_categorical( mnistData$test$y[1:10], numberOfLabels )

# We add a dimension of 1 to specify the channel size

inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )

model <- createAlexNetModel2D( inputImageSize = inputImageSize,
  numberOfOutputs = numberOfLabels )

model %>% compile( loss = 'categorical_crossentropy',
  optimizer = optimizer_adam( lr = 0.0001 ),
  metrics = c( 'categorical_crossentropy', 'accuracy' ) )
gc()
rm(mnistData); gc()
# Comment out the rest due to travis build constraints

# track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1,
#   epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 )

# Now test the model

# testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall )
# predictedData <- model %>% predict( X_testSmall, verbose = 1 )
rm(model); gc()

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.