## ----echo=FALSE, message = FALSE, fig.width = 7, fig.height = 7---------------
library(SIBER, quietly = TRUE,
verbose = FALSE,
logical.return = FALSE)
library(viridis)
palette(viridis(4))
# read in the data
# Replace this line with a call to read.csv() or similar pointing to your
# own dataset.
data("demo.siber.data")
mydata <- demo.siber.data
# create the siber object
siber.example <- createSiberObject(mydata)
# Create lists of plotting arguments to be passed onwards to each
# of the three plotting functions.
community.hulls.args <- list(col = 1, lty = 1, lwd = 1)
group.ellipses.args <- list(n = 100, p.interval = 0.95, lty = 1, lwd = 2)
group.hull.args <- list(lty = 2, col = "grey20")
# plot the raw data
par(mfrow=c(1,1))
plotSiberObject(siber.example,
ax.pad = 2,
hulls = F, community.hulls.args,
ellipses = F, group.ellipses.args,
group.hulls = F, group.hull.args,
bty = "L",
iso.order = c(1,2),
xlab = expression({delta}^13*C~'permille'),
ylab = expression({delta}^15*N~'permille')
)
## ----import-data, fig.width = 6, fig.height = 6-------------------------------
rm(list = ls()) # clear the memory of objects
# load the siar package of functions
library(SIBER)
# read in the data
# Replace this line with a call to read.csv() or similar pointing to your
# own dataset.
data("demo.siber.data")
mydata <- demo.siber.data
# create the siber object
siber.example <- createSiberObject(mydata)
# Create lists of plotting arguments to be passed onwards to each
# of the three plotting functions.
community.hulls.args <- list(col = 1, lty = 1, lwd = 1)
group.ellipses.args <- list(n = 100, p.interval = 0.95,
lty = 1, lwd = 2)
group.hull.args <- list(lty = 2, col = "grey20")
# ellipses and group.hulls are set to TRUE or T for short to force
# their plotting.
par(mfrow=c(1,1))
plotSiberObject(siber.example,
ax.pad = 2,
hulls = F, community.hulls.args,
ellipses = T, group.ellipses.args,
group.hulls = T, group.hull.args,
bty = "L",
iso.order = c(1,2),
xlab = expression({delta}^13*C~'permille'),
ylab = expression({delta}^15*N~'permille')
)
# You can add more ellipses by directly calling plot.group.ellipses()
# Add an additional p.interval % prediction ellilpse
plotGroupEllipses(siber.example, n = 100, p.interval = 0.95,
lty = 1, lwd = 2)
# or you can add the XX% confidence interval around the bivariate means
# by specifying ci.mean = T along with whatever p.interval you want.
plotGroupEllipses(siber.example, n = 100, p.interval = 0.95,
ci.mean = T, lty = 1, lwd = 2)
# Calculate sumamry statistics for each group: TA, SEA and SEAc
group.ML <- groupMetricsML(siber.example)
print(group.ML)
# add a legend
legend("topright", colnames(group.ML),
pch = c(1,1,1,2,2,2), col = c(1:3, 1:3), lty = 1)
## ----fit-bayes----------------------------------------------------------------
# options for running jags
parms <- list()
parms$n.iter <- 2 * 10^4 # number of iterations to run the model for
parms$n.burnin <- 1 * 10^3 # discard the first set of values
parms$n.thin <- 10 # thin the posterior by this many
parms$n.chains <- 2 # run this many chains
# define the priors
priors <- list()
priors$R <- 1 * diag(2)
priors$k <- 2
priors$tau.mu <- 1.0E-3
# fit the ellipses which uses an Inverse Wishart prior
# on the covariance matrix Sigma, and a vague normal prior on the
# means. Fitting is via the JAGS method.
ellipses.posterior <- siberMVN(siber.example, parms, priors)
## ----plot-data, fig.width = 10, fig.height = 6--------------------------------
#
# ----------------------------------------------------------------
# Plot out some of the data and results
# ----------------------------------------------------------------
# The posterior estimates of the ellipses for each group can be used to
# calculate the SEA.B for each group.
SEA.B <- siberEllipses(ellipses.posterior)
siberDensityPlot(SEA.B, xticklabels = colnames(group.ML),
xlab = c("Community | Group"),
ylab = expression("Standard Ellipse Area " ('permille' ^2) ),
bty = "L",
las = 1,
main = "SIBER ellipses on each group"
)
# Add red x's for the ML estimated SEA-c
points(1:ncol(SEA.B), group.ML[3,], col="red", pch = "x", lwd = 2)
# Calculate some credible intervals
cr.p <- c(0.95, 0.99) # vector of quantiles
# call to hdrcde:hdr using lapply()
SEA.B.credibles <- lapply(
as.data.frame(SEA.B),
function(x,...){tmp<-hdrcde::hdr(x)$hdr},
prob = cr.p)
print(SEA.B.credibles)
# do similar to get the modes, taking care to pick up multimodal posterior
# distributions if present
SEA.B.modes <- lapply(
as.data.frame(SEA.B),
function(x,...){tmp<-hdrcde::hdr(x)$mode},
prob = cr.p, all.modes=T)
print(SEA.B.modes)
## ----prob-diff-g12------------------------------------------------------------
Pg1.1_lt_g1.2 <- sum( SEA.B[,1] < SEA.B[,2] ) / nrow(SEA.B)
print(Pg1.1_lt_g1.2)
## ----prob-diff-g13------------------------------------------------------------
Pg1.1_lt_g1.3 <- sum( SEA.B[,1] < SEA.B[,3] ) / nrow(SEA.B)
print(Pg1.1_lt_g1.3)
## ----prob-diff-all------------------------------------------------------------
Pg1.1_lt_g2.1 <- sum( SEA.B[,1] < SEA.B[,4] ) / nrow(SEA.B)
print(Pg1.1_lt_g2.1)
Pg1.2_lt_g1.3 <- sum( SEA.B[,2] < SEA.B[,3] ) / nrow(SEA.B)
print(Pg1.2_lt_g1.3)
Pg1.3_lt_g2.1 <- sum( SEA.B[,3] < SEA.B[,4] ) / nrow(SEA.B)
print(Pg1.3_lt_g2.1)
Pg2.2_lt_g2.3 <- sum( SEA.B[,5] < SEA.B[,6] ) / nrow(SEA.B)
print(Pg2.2_lt_g2.3)
## ----ML-overlap---------------------------------------------------------------
overlap.G1.2.G1.3 <- maxLikOverlap("1.2", "1.3", siber.example, p = 0.95, n =)
## ----ML-overlap-proportions---------------------------------------------------
prop.of.first <- as.numeric(overlap.G1.2.G1.3["overlap"] / overlap.G1.2.G1.3["area.1"])
print(prop.of.first)
prop.of.second <- as.numeric(overlap.G1.2.G1.3["overlap"] / overlap.G1.2.G1.3["area.2"])
print(prop.of.second)
prop.of.both <- as.numeric(overlap.G1.2.G1.3["overlap"] / (overlap.G1.2.G1.3["area.1"] + overlap.G1.2.G1.3["area.2"]))
print(prop.of.both)
## ----bayesian-overlap---------------------------------------------------------
bayes.overlap.G2.G3 <- bayesianOverlap("1.2", "1.3", ellipses.posterior,
draws = 10, p.interval = 0.95,
n = 360)
print(bayes.overlap.G2.G3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.