InverseMillsRatio <- function(q, mean, sd) {
x <- (q - mean) / sd
pdf <- dnorm(x, log = TRUE)
cdf <- pnorm(x, log = TRUE)
d <- exp(pdf - cdf)
d[is.na(d)] <- 0
return(d)
}
Pi_Zj_Zcut_new <- function(q, mean, sd, wl0) {
a <- wl0 * pnorm(q, mean, sd)
if(sum(a) == 0) return(wl0)
return(a / sum(a))
}
SeparateKRpkmNew2 <- function(x, n, q, err = 1e-10) {
k <- 1
q <- max(q, min(x))
c <- sum(x < q)
x <- x[which(x >= q)]
if (length(x) <= k) {
warning(sprintf("The length of x is %i. Sorry, too little conditions\n", length(x)))
return(cbind(0, 0, 0))
}
mean <- c()
for (i in 1:k) {
mean <- c(mean, sort(x)[floor(i * length(x)/(k + 1))])
}
if(k>1)
{
mean[1] <- min(x) - 1
mean[length(mean)] <- max(x) + 1
}
p <- rep(1/k, k)
sd <- rep(sqrt(var(x)), k)
pdf.x.portion <- matrix(0, length(x), k)
for (i in 1:n) {
p0 <- p
mean0 <- mean
sd0 <- sd
pdf.x.all <- t(p0 * vapply(x, function(x) dnorm(x, mean0, sd0), rep(0, k)))
pdf.x.portion <- pdf.x.all/rowSums(t(pdf.x.all))
cdf.q <- pnorm(q, mean0, sd0)
cdf.q.all <- p0 * cdf.q
cdf.q.portion <- cdf.q.all/sum(cdf.q.all)
cdf.q.portion.c <- cdf.q.portion * c
denom <- colSums(t(pdf.x.portion)) + cdf.q.portion.c
p <- denom/(nrow(t(pdf.x.portion)) + c)
im <- dnorm(q, mean0, sd0)/cdf.q * sd0
im[is.na(im)] <- 0
mean <- colSums(crossprod(x, t(pdf.x.portion)) + (mean0 - sd0 * im) * cdf.q.portion.c)/denom
sd <- sqrt((colSums((x - matrix(mean0, ncol = length(mean0), nrow = length(x), byrow = TRUE)) ^ 2
* t(pdf.x.portion)) + sd0 ^ 2 * (1 - (q - mean0) / sd0 * im) * cdf.q.portion.c) / denom)
if (!is.na(match(NaN, sd))) {
break
}
if ((mean(abs(p - p0)) <= err) &&
(mean(abs(mean - mean0)) <= err) &&
(mean(abs(sd - sd0)) <= err)) {
break
}
}
return(cbind(p, mean, sd))
}
#' Calcuate
#'
#' @param x data, example: x<-runif(100,0,1)
#' @param n rounds
#' @param q cutoff
#' @param k k=1..5
#' @param err
#'
#' @return a matrix contains pi, mean and sd
#' @export
#'
#' @examples
SeparateKRpkmNew <- function(x, n, q, k, err = 1e-10) {
if (k == 1) return(SeparateKRpkmNew2(x, n, q, err = 1e-10))
q <- max(q, min(x))
c <- sum(x < q)
x <- x[which(x >= q)]
if (length(x) <= k) {
warning(sprintf("The length of x is %i. Sorry, too little conditions\n", length(x)))
return(cbind(0, 0, 0))
}
mean <- c()
for (i in 1:k) {
mean <- c(mean, sort(x)[floor(i * length(x) / (k + 1))])
}
mean[1] <- min(x) - 1 # What is those two lines for?
mean[length(mean)] <- max(x) + 1 # Without them the result of mean[1] is slightly different.
p <- rep(1 / k, k)
sd <- rep(sqrt(var(x)), k)
pdf.x.portion <- matrix(0, length(x), k)
for (i in 1:n) {
p0 <- p
mean0 <- mean
sd0 <- sd
pdf.x.all <- t(p0 * vapply(x, function(x) dnorm(x, mean0, sd0), rep(0, k)))
pdf.x.portion <- pdf.x.all / rowSums(pdf.x.all)
cdf.q <- pnorm(q, mean0, sd0)
cdf.q.all <- p0 * cdf.q
cdf.q.portion <- cdf.q.all / sum(cdf.q.all)
cdf.q.portion.c <- cdf.q.portion * c
denom <- colSums(pdf.x.portion) + cdf.q.portion.c
p <- denom / (nrow(pdf.x.portion) + c)
im <- dnorm(q, mean0, sd0) / cdf.q * sd0
im[is.na(im)] <- 0
mean <- colSums(crossprod(x, pdf.x.portion) + (mean0 - sd0 * im) * cdf.q.portion.c) / denom
sd <- sqrt((colSums((x - matrix(mean0, ncol = length(mean0), nrow = length(x),
byrow = TRUE)) ^ 2 * pdf.x.portion) + sd0 ^ 2 * (1 - (q - mean0) / sd0 * im) *
cdf.q.portion.c) / denom)
if (!is.na(match(NaN, sd))) {
break
}
if ((mean(abs(p - p0)) <= err) && (mean(abs(mean - mean0)) <= err) &&
(mean(abs(sd - sd0)) <= err)) {
break
}
}
return(cbind(p, mean, sd))
}
# x: data, x<-runif(100,0,1), n: 300, (cutoff for stop, diff of total up ABS<1e-6, q=0 for testing data, k=1...5)
SeparateKRpkmNewp <- function(x, n, q, k, err = 1e-10) {
q <- max(q, min(x))
c <- sum(x < q)
x <- x[which(x >= q)]
mean <- c()
for (i in 1:k) {
mean <- c(mean, sort(x)[floor(i * length(x) / (k + 1))])
}
mean[1] <- min(x) - 1 # What is those two lines for?
mean[length(mean)] <- max(x) + 1 # Without them the result of mean[1] is slightly different.
p <- rep(1 / k, k)
sd <- rep(sqrt(var(x)), k)
t <- matrix(0, length(x), k)
for (i in 1:n) {
p0 <- p
mean0 <- mean
sd0 <- sd
for (row in 1:nrow(t)) {
all <- p0 * dnorm(x[row], mean0, sd0)
t[row, ] <- all / sum(all)
}
pZil <- Pi_Zj_Zcut_new(q, mean0, sd0, p0) ################################################################
denom <- (colSums(t) + pZil * c)
all <- denom / (nrow(t) + c)
p <- all / sum(all)
im <- InverseMillsRatio(q, mean0, sd0)
mean <- colSums(crossprod(x, t) + (mean0 - sd0 * im) * pZil * c) / denom
a <- rep(0, length(sd))
for (col in 1:length(sd)) {
a[col] <- sum((x - mean0[col])^2 * t[, col])
}
sd <- sqrt((a + (sd0)^2 * (1 - (q - mean0) / sd0 * im) * pZil * c) / denom)
if ((mean(abs(p - p0)) <= err) && (mean(abs(mean - mean0)) <= err) && (mean(abs(sd - sd0)) <= err)) {
break
}
}
return (cbind(p, mean, sd))
}
LogSeparateKRpkmNew <- function(x, n, q, k, err = 1e-10) {
return (SeparateKRpkmNew(log(x), n, log(q), k, err))
}
#' Calcuate the LTMG_2LR for some genes
#'
#' @param x data, a List of NumericVector
#' @param n rounds
#' @param q cutoff of the elements in x
#' @param r maximum value of the standard diversion
#' @param s minimum value of the standard diversionzz
#' @param k number of peaks, should be 2
#' @param err the upper bound on the absolute error
#'
#' @return a matrix contains pi, mean and sd
#' @export
#'
#' @examples
SeparateKRpkmNewLRPlus <- function(x, n, q, r, s = 0.05, k = 2, err = 1e-10, M = Inf, m = -Inf) {
c <- sapply(x, function(x) sum(x < q), simplify = "array")
x_r0 <- lapply(x, function(x) x[which(x < q)])
x_r <- lapply(x, function(x) x[which(x >= q)])
x_r0.length <- sapply(x_r0, length)
x_r.length <- sapply(x_r, length)
x_r.non.zero <- x_r.length > 0
x_r.non.allpos<- x_r0.length > 0
x_r.input<-(x_r.non.allpos*x_r.non.zero)>0
x_r <- x_r[x_r.input]
if (sum(x_r.non.zero*x_r.non.allpos) == 0) {
warning("Completely all 0/all pos conditions\n")
results_c<-list()
for(i in 1:length(x))
{
ccc<-matrix(0,2,3)
colnames(ccc)<-c("p","mean","sd")
if(x_r.non.zero[i]==0)
{
ccc[1,1]<-1
ccc[2,1]<-0
ccc[1,2]<-m
ccc[2,2]<-M
ccc[1,3]<-s
ccc[2,3]<-s
}
if(x_r.non.allpos[i]==0)
{
ccc[1,1]<-0
ccc[2,1]<-1
ccc[1,2]<-m
ccc[2,2]<-mean(x[[i]])
ccc[1,3]<-s
ccc[2,3]<-sd(x[[i]])
}
results_c[[i]]<-ccc
}
return(results_c)
}
if(is.na(max(x_r.length[x_r.input])<5))
{
browser()
}
if(max(x_r.length[x_r.input])<5)
{
warning("Too little non-zero part, forced ZIG\n")
results_c<-list()
for(i in 1:length(x))
{
ccc<-matrix(0,2,3)
colnames(ccc)<-c("p","mean","sd")
if(x_r.non.zero[i]==0)
{
ccc[1,1]<-1
ccc[2,1]<-0
ccc[1,2]<-m
ccc[2,2]<-M
ccc[1,3]<-s
ccc[2,3]<-s
}
if(x_r.non.allpos[i]==0)
{
ccc[1,1]<-0
ccc[2,1]<-1
ccc[1,2]<-m
ccc[2,2]<-mean(x[[i]])
ccc[1,3]<-s
ccc[2,3]<-sd(x[[i]])
}
if((x_r.non.allpos[i]!=0)&(x_r.non.zero[i]!=0))
{
ccc[1,1]<-sum(x[[i]]<q)/length(x[[i]])
ccc[2,1]<-sum(x[[i]]>=q)/length(x[[i]])
ccc[1,2]<-m
ccc[2,2]<-mean(x[[i]][which(x[[i]]>=q)])
ccc[1,3]<-s
ccc[2,3]<-sd(x[[i]][which(x[[i]]>=q)])
if(is.na(ccc[2,3]))
{
ccc[2,3]<-s
}
}
results_c[[i]]<-ccc
}
return(results_c)
}
c<- c[x_r.input]
c_sum <- sum(c)
ncol <- length(x_r)
x_all <- c(x_r, recursive = TRUE)
p <- matrix(1 / k, nrow = k, ncol = ncol)
mean <- matrix(nrow = k, ncol = ncol)
for (col in 1:ncol) {
ni <- length(x_r[[col]])
for (row in 1:k) {
tg_ic <- floor(row * ni / (k + 1))
cc <- sort(x_r[[col]])[tg_ic]
if (tg_ic < 1) {
cc <- sort(x_r[[col]])[1] - 0.5
}
if (tg_ic > ni) {
cc <- sort(x_r[[col]])[ni] + 0.5
}
mean[row, col] <- cc
}
}
sd <- matrix(sqrt(vapply(x_r, var, 0)), nrow = k, ncol = ncol, byrow = TRUE)
if(anyNA(sd)) {
sd[is.na(sd)] <- 1
}
sd[which(sd<s)]<-s
p0 <- p
mean0 <- mean
sd0 <- sd
t <- lapply(x_r, function(x) matrix(nrow = length(x), ncol = k))
for (i in 1:n) {
ccc <- matrix(nrow = k, ncol = ncol)
wad <- rep(0, ncol + 1)
mean_all <- rep(0, ncol + 1)
sd_all <- rep(0, ncol + 1)
sd_all_1_sum <- 0
for (col in 1:ncol) {
t_u <- t(p[, col] * vapply(x_r[[col]], function(x) dnorm(x, mean[, col], sd[, col]), rep(0, k)))
t[[col]] <- t_u / rowSums(t_u)
pZil2 <- Pi_Zj_Zcut_new(q, mean[, col], sd[, col], p[, col])
denom2 <- (colSums(t[[col]]) + pZil2 * c[[col]])
im <- InverseMillsRatio(q, mean[, col], sd[, col])
mean0[, col] <- colSums(crossprod(x_r[[col]], t[[col]]) + (mean[, col] - sd[, col] * im) * pZil2 * c[[col]]) / denom2
if(denom2[1]==0)
{
mean0[1, col]<-mean[1, col]
}
if(denom2[2]==0)
{
mean0[2, col]<-mean[2, col]
}
if (anyNA(denom2)) {
warning("denom2 conttains NA\n")
print(x_r)
print(col)
print(dnorm(x_r[[col]][1], mean[1, col], sd[1, col]))
print(dnorm(x_r[[col]][2], mean[2, col], sd[2, col]))
browser()
}
if (anyNA(mean0)) {
warning("mean0 conttains NA\n")
}
if (mean0[1, col] > q) {#denom2[1] == 0 ||
mean0[1, col] <- q
}
if (mean0[2, col] < q) {#denom2[2] == 0 ||
mean0[2, col] <- q
}
sd0[, col] <- sqrt((colSums((x_r[[col]] - matrix(mean[, col], ncol = length(mean[, col]), nrow = length(x_r[[col]]),
byrow = TRUE)) ^ 2 * t[[col]]) + (sd[, col]) ^ 2 * (1 - (q - mean[, col]) / sd[, col] * im) * pZil2 * c[[col]]) / denom2)
if (denom2[1] == 0 || sd0[1, col] > r) {
sd0[1, col] <- r
}
if (denom2[2] == 0 || sd0[2, col] > r) {
sd0[2, col] <- r
}
wl2 <- denom2 / (nrow(t[[col]]) + c[[col]])
# Reorder by mean0
tg_R <- order(mean0[, col])
ccc[, col] <- wl2[tg_R] * (c[[col]] + length(x_r[[col]])) / (sum(c) + sum(lengths(x_r)))
mean0[, col] <- mean0[, col][tg_R]
sd0[, col] <- sd0[, col][tg_R]
wad[[col + 1]] <- ccc[-1, col]
wad[1] <- wad[1] + ccc[1, col]
mean_all[[col + 1]] <- mean0[, col][-1]
mean_all[1] <- mean_all[1] + mean0[1, col] * c[[col]] / c_sum
sd_all[[col + 1]] <- sd0[, col][-1]
sd_all_1_sum <- sd_all_1_sum + sd0[1, col] ^ 2 * c[[col]]
}
sd_all[1] <- sqrt(sd_all_1_sum / c_sum)
t0 <- matrix(nrow = sum(vapply(x_r, length, 0)), ncol = k + ncol - 1)
for (row in 1:nrow(t0)) {
t0_u <- wad * dnorm(x_all[row], mean_all, sd_all)
t0[row, ] <- t0_u / sum(t0_u)
}
pZil0 <- Pi_Zj_Zcut_new(q, mean_all, sd_all, wad)
denom0 <- colSums(t0) + pZil0 * c_sum
im1 <- InverseMillsRatio(q, mean_all[1], sd_all[1])
mean0[1, ] <- (sum(x_all * t0[, 1]) + (mean_all[1] - sd_all[1] * im1) * pZil0[1] * c_sum) / denom0[1]
sd0[1, ] <- sqrt((sum((x_all - mean_all[1]) ^ 2 * t0[, 1]) + sd_all[1] ^ 2 * (1 - (q - mean_all[1]) / sd_all[1] * im1) *
pZil0[1] * c_sum) / denom0[1])
for (col in 1:ncol) {
t_u <- t(p[, col] * vapply(x_r[[col]], function(x) dnorm(x, mean[, col], sd[, col]), c(0, 0)))
t[[col]] <- t_u / rowSums(t_u)
pZil <- Pi_Zj_Zcut_new(q, mean[, col], sd[, col], p[, col])
p_u <- (colSums(t[[col]]) + pZil * c[[col]]) / (nrow(t[[col]]) + c[[col]])
p0[, col] <- p_u / sum(p_u)
}
for (col in 1:ncol) {
sd0[1, col] <- min(sd0[1, col], r)
sd0[2, col] <- max(min(sd0[2, col], r), s)
mean0[1, col] <- min(mean0[1, col], q)
mean0[2, col] <- max(mean0[2, col], q)
}
#print(i)
#print(p0)
#print(mean0)
#print(sd0)
if (anyNA(sd0)) {
warning("Found at least one NA in sd")
break
}
if ((mean(abs(p - p0)) <= err) && (mean(abs(mean - mean0)) <= err) && (mean(abs(sd - sd0)) <= err)) {
break
}
p <- p0
mean <- mean0
sd <- sd0
}
print(i)
ret <- vector("list", length(x))
mean_peak1 = mean[1, 1]
sd_peak1 = sd[1, 1]
col <- 1
for (index in which((x_r.non.zero*x_r.non.allpos)==1)){
ret[[index]] <- cbind(p = p[, col], mean = mean[, col], sd = sd[, col])
col <- col + 1
}
for (index in 1:length(x)){
if((x_r.non.zero[index]*x_r.non.allpos[index])==0)
{
ccc<-matrix(0,2,3)
colnames(ccc)<-c("p","mean","sd")
if(x_r.non.zero[index]==0)
{
ccc[1,1]<-1
ccc[2,1]<-0
ccc[1,2]<-mean_peak1
ccc[2,2]<-M
ccc[1,3]<-sd_peak1
ccc[2,3]<-s
}
if(x_r.non.allpos[index]==0)
{
ccc[1,1]<-0
ccc[2,1]<-1
ccc[1,2]<-mean_peak1
ccc[2,2]<-mean(x[[index]])
ccc[1,3]<-sd_peak1
ccc[2,3]<-sd(x[[index]])
}
ret[[index]] <- ccc
}
}
return(list(ret, i))
}
SeparateKRpkmNewLR <- function(x, n, q, r, s = 0.05, k = 2, err = 1e-10, M = Inf, m = -Inf) {
return (SeparateKRpkmNewLRPlus(x, n, q, r, s, k, err, M, m)[[1]])
}
LogSeparateKRpkmNewLR <- function(x, n, q, r, k = 2) {
return(SeparateKRpkmNewLR(log(x), n, log(q), r, k))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.