R/PCC_function_LogNormalVarianceUnknown.R

Defines functions PCC_Lognormal_VarianceUnknown

Documented in PCC_Lognormal_VarianceUnknown

# Function for running PCC LogNormal with variance unknown

PCC_Lognormal_VarianceUnknown <- function( data = NULL, historical_data = NULL,
                                           ml = NULL, a0 = 0, b0 =0, alpha_0 = NULL,
                                           ARL_0 = 370.4, FAP = NULL, FIR = FALSE, fFIR = .99,
                                           aFIR = 1/8, summary_list = TRUE, PCC_PLOT = TRUE, PriorPosterior_PLOT = FALSE,
                                           historical_data_PLOT = FALSE, pdf_report = FALSE,
                                           xlab = "Observation Order", ylab = "Quality characteristic Values",
                                           main = "PCC LogNormal with unknown variance")
{
  ### Initial checks before procceeding to the main body of function
  ### Mainly this chunk of code will correspond to invalid general input before running stuff
  # 'data' (i) not defined (ii) not in vector (iii) contain non-numeric value
  if ( is.null(data) ) {
    stop("'data' have not been defined")
  } else { if ( any(!is.numeric((unlist(data)))) ) stop("Invalid 'data' input")
    if ( !is.vector(data) ) stop("'data' must be in vector form")
  }
  # 'historical_data' (i) not in vector (ii) contain non-numeric value
  if ( !is.null(historical_data) ) {
    if ( any(!is.numeric((unlist(historical_data)))) ) stop("Invalid 'historical_data' input")
    if ( !is.vector(data) ) stop("'historical data' must be in vector form")
  }

  # 'ARL_0' (i) non-numeric (ii) negative
  if( !missing(ARL_0) ) {
    if ( length(unlist(ARL_0))>1 ) { message("More than one value for 'ARL_0', the first one will only be used")
      if ( !is.numeric(ARL_0[1]) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } else { ARL_0 <- ARL_0[1] }
    } else { if ( !is.numeric(ARL_0) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } }
  }

  # 'FAP' (i) non-numeric (ii) negative
  if (!missing(FAP)){
    if ( length(unlist(FAP))>1 ) { message("More than one value for 'FAP', the first one will only be used")
      if ( !is.numeric(FAP[1]) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } else { FAP <- FAP[1] }
    } else { if ( !is.numeric(FAP) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } }
  }

  # 'FIR' (i) logical (ii) fFIR - aFIR conditions
  if ( length(unlist(FIR))>1 ) {
    message("More than one value for 'FIR', the first one will only be used")
    if ( !is.logical(FIR[1]) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") } else { FIR <- FIR[1] }
  } else {
    if ( !is.logical(FIR) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") }
  }

  # fFIR - aFIR conditions if  FIR
  if ( FIR ) {
    if ( !missing(fFIR) ) {
      if ( length(unlist(fFIR))>1 ) {
        message("More than one value for 'fFIR', the first one will only be used")
        if ( !is.numeric(fFIR[1]) | fFIR[1]<=0 | fFIR[1]>=1 ) {
          stop("Invalid 'fFIR' value")
        } else { fFIR <- fFIR[1] }
      } else {
        if ( !is.numeric(fFIR) | fFIR<=0 | fFIR>=1 ) {
          stop("Invalid 'fFIR' value")
        }
      }
    }

    if ( !missing(aFIR) ) {
      if ( length(unlist(aFIR))>1 ) {
        message("More than one value for 'aFIR', the first one will only be used")
        if ( !is.numeric(aFIR[1]) | aFIR[1]<=0 ) {
          stop("Invalid 'aFIR' value")
        } else { aFIR <- aFIR[1] }
      } else {
        if ( !is.numeric(aFIR) | aFIR<=0 ) {
          stop("Invalid 'aFIR' value")
        }
      }
    }
  }

  ### Setting the False Alarm Probability & False Alarm Rate based on the Sidak correction
  # data length
  N <- length(data)
  # If both ARL_0 and FAP chosen
  if ( !is.null(ARL_0) & !is.null(FAP) ) {
    message("Both ARL_0 and FAP are defined as input, so ARL_0 is used by default. \nIn order to use FAP instead, set ARL_0 = NULL")
    FAR <- 1/ARL_0
    # If only FAP is chosen
  } else if ( is.null(ARL_0) & !is.null(FAP) ) {
    FAR <- 1-(1-FAP)^(1/(N-1))
    # If only ARL0 is chosen
  } else if ( !is.null(ARL_0) & is.null(FAP) ){
    FAR <- 1/ARL_0
  }
  # If FIR PCC is chosen - default value for f=0.99
  if ( FIR ) {
    tf <- 1:N
    Afir <- c((  1- (1-fFIR)^(1+aFIR*(tf-1)) ) )
    FAR <- 1-(1-FAR)*Afir
  }

  ###############################################################
  ###############################################################
  ## START (1) Only this bit changes from function to function ##
  ## In some cases 'data' and 'historical_data' restrictions   ##
  ## change as well at the beginning of the function           ##
  ###############################################################
  ###############################################################

  # Likelihood mean input (i) more than one value for parameters (ii) non-numeric input
  if ( is.null(ml) ) {
    stop("Likelihood mean 'ml' has not been defined")
  } else {
    if ( length(unlist(ml))>1 ) { message("More than one value for 'ml', the first one will only be used")
      if ( !is.numeric(ml) ) { stop("Invalid 'ml' value") } else { ml <- ml[1] }
    } else { if ( !is.numeric(ml) ) { stop("Invalid 'ml' value") } }
  }

  # Prior parameter input (i) more than one value for parameters (ii) non-numeric input
  if( !missing(a0) ) {
    if ( length(unlist(a0))>1 ) { message("More than one value for 'a0', the first one will only be used")
      if ( !is.numeric(a0) | a0<=0 ) { stop("Invalid 'a0' value") } else { a0 <- a0[1] }
    } else { if ( !is.numeric(a0) | a0<=0 ) { stop("Invalid 'a0' value") } }
  }

  if( !missing(b0) ) {
    if ( length(unlist(b0))>1 ) { message("More than one value for 'b0', the first one will only be used")
      if ( !is.numeric(b0) | b0<=0 ) { stop("Invalid 'b0' value") } else { b0 <- b0[1] }
    } else { if ( !is.numeric(b0) | b0<=0 ) { stop("Invalid 'b0' value") } }
  }

  ### Main body of function - PCC illustration - USING FAR (or FAP equivelantly)
  ## Histotic data and processing
  if ( !is.null(historical_data) ){
    N_historicaldata <- length(historical_data)
    # Check about alpha_0
    # If no chosen value for alpha_0 use default setting
    if (is.null(alpha_0)) { alpha_0 <-1/N_historicaldata
    } else {
      if ( length(unlist(alpha_0))>1 ) {
        message("More than one value for 'alpha_0', the first one will only be used")
        if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1) { stop("Invalid 'alpha_0' value")
        } else { if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1 ) { stop("Invalid 'alpha_0' value") } }
      }
    }
    # Process historical data
    # Power Prior parameters
    a0_PowerP <- a0 + alpha_0*N_historicaldata/2
    b0_PowerP  <- b0 + alpha_0*sum( (log(historical_data) - ml )^2 )/2
    # Keep similar notation as input
    a0 <- a0_PowerP ; b0 <- b0_PowerP

  }

  ### PCC implementation
  # Sum of observations squared
  datalogSum2 <- cumsum( (log(data) - ml )^2 )[seq( 1, length(data) )]

  # Posterior distribution parameters
  a0_Post <- a0 + (1:N)/2
  b0_Post <- b0 + datalogSum2/2

  # HPRD - LogNormal likelihood ; Variance unknown
  HPRD_likLogNormVarU = function(far, Ml, Ap, Bp){

    f <- function(x){ exp(Ml + qt( 1-far+x, df = 2*Ap )*sqrt(Bp/Ap)) -
                      exp(Ml + qt( x, df = 2*Ap )*sqrt(Bp/Ap) ) }
    out <- optimize(f, c(0, far), tol = .Machine$double.eps)
    c( exp(Ml + qt( out$minimum, df=2*Ap )*sqrt(Bp/Ap) ),
       exp(Ml + qt( 1-far+out$minimum, df=2*Ap )*sqrt(Bp/Ap) ) )

  }

  # Control limits
  if (!FIR) { CL <- t( mapply( function(MP, AP, BP, FD=FAR) { HPRD_likLogNormVarU(far = FD, Ml = MP, Ap = AP, Bp = BP) },
                               MP = ml, AP = a0_Post, BP = b0_Post) )
  } else { CL <- t( mapply( function(MP, AP, BP, FD) { HPRD_likLogNormVarU(far = FD, Ml = MP, Ap = AP, Bp = BP) },
                            MP = ml, AP = a0_Post, BP = b0_Post, FD = FAR) )
  }

  CL <- rbind( c(NA, NA), CL )
  CL <- CL[-nrow(CL), ]

  ## Prior Posterior plot
  if ( PriorPosterior_PLOT ) {


    PrPostPLOT <-
      ggplot2::ggplot(data.frame(x = c(
        ifelse( a0 == 0 & b0 == 0, invgamma::qinvgamma(1 - .9999, shape = a0_Post[N], rate = b0_Post[N]),
                min( invgamma::qinvgamma(1 - .9999, shape = a0, rate = b0), invgamma::qinvgamma(1 - .9999, shape = a0_Post[N], rate = b0_Post[N]) ) ),
        ifelse( a0 == 0 & b0 == 0, invgamma::qinvgamma(.9999, shape = a0_Post[N], rate = b0_Post[N]),
                min( invgamma::qinvgamma(.9999, shape = a0, rate = b0), invgamma::qinvgamma(.9999, shape = a0_Post[N], rate = b0_Post[N]) ) + ifelse( a0 > 1, b0/(a0 - 1), b0/a0 ) ) ) ),
        ggplot2::aes(x = x)) +
      ggplot2::stat_function(fun = invgamma::dinvgamma, args = list(shape = a0_Post[N], rate = b0_Post[N]),
                             ggplot2::aes(colour = "Posterior", linetype = "Posterior"), size = 1) +
      {if(a0 == 0 & b0 == 0) { ggplot2::stat_function(fun = function(x) { 1/(x + .275)^2 }, ggplot2::aes(colour = "Prior", linetype = "Prior"), size = 1)
      } else { ggplot2::stat_function(fun = invgamma::dinvgamma, args = list(shape = a0, rate = b0), ggplot2::aes(colour = "Prior", linetype = "Prior"), size = 1)  } } +
      ggplot2::scale_x_continuous(name = "") +
      ggplot2::scale_y_continuous(name = "Density") +
      ggplot2::scale_linetype_manual(values = c("solid", "dashed"), guide = FALSE) +
      ggplot2::scale_colour_manual(values = c("#3CB371", "#FF4500"),
                                   labels = c( bquote("Prior: IG(" ~ theta^2 ~ "|" ~ .(round(a0, digits = 1)) ~ ", " ~ .(round(b0, digits = 1)) ~ ")" ),
                                               bquote("Posterior: IG(" ~ theta^2 ~ "|" ~ .(round(a0_Post[N], digits = 1)) ~ ", " ~ .(round(b0_Post[N], digits = 1)) ~ ")" )),
                                   guide = guide_legend(override.aes = list( color = c("#FF4500", "#3CB371"),
                                                                             linetype = c("dashed", "solid"),
                                                                             size = c(.5, .5)), title = NULL)) +
      ggplot2::ggtitle(expression(atop("PCC LogNormal likelihood - unknown variance"~theta^2, "Prior/Posterior distribution"))) +
      {if(a0 == 0 & b0 == 0) {
        ggplot2::geom_point( ggplot2::aes(x = ifelse( a0_Post[N] > 1, b0_Post[N]/(a0_Post[N] - 1), NA ), y = 0 ), color = "#3CB371",  show.legend = FALSE, shape = 4, size = 3, stroke = 1.5, na.rm = TRUE )
      } else { ggplot2::geom_point( ggplot2::aes(x = c(ifelse( a0 > 1, b0/(a0 - 1), NA ), ifelse( a0_Post[N] > 1, b0_Post[N]/(a0_Post[N] - 1), NA)), y=c(0, 0)), color = c("#FF4500", "#3CB371"),  show.legend = FALSE, shape = 4, size = 3, stroke = 1.5, na.rm = TRUE ) } } +
      {if(a0 == 0 & b0 == 0) {
        ggplot2::annotate("text", x = ifelse( a0_Post[N] > 1, b0_Post[N]/(a0_Post[N] - 1), NA ), y = 0,
                          label = paste(expression(mu[post])),
                          color = "#3CB371", size = 6, parse = TRUE,
                          vjust = 1.25, na.rm = TRUE)
      } else {
        ggplot2::annotate("text", x = c(ifelse( a0 > 1, b0/(a0 - 1), NA), ifelse( a0_Post[N] > 1, b0_Post[N]/(a0_Post[N] - 1), NA)), y = c(0, 0),
                          label = paste(expression(mu[prior], mu[post])),
                          color = c("#FF4500", "#3CB371"), size = 6, parse = TRUE,
                          vjust = 1.25, na.rm = TRUE)
      } } +
      ggplot2::theme(legend.position = "bottom",
                     axis.line = ggplot2::element_line(size=1, colour = "black"),
                     panel.grid.major = ggplot2::element_blank(),
                     panel.grid.minor = ggplot2::element_blank(),
                     panel.border = ggplot2::element_blank(),
                     panel.background = ggplot2::element_blank(),
                     plot.title = ggplot2::element_text(size = 18, hjust = 0.5),
                     text = ggplot2::element_text(size = 15),
                     axis.text.x = ggplot2::element_text(colour="black", size = 12),
                     axis.text.y = ggplot2::element_text(colour="black", size = 12))


    print(PrPostPLOT)
  }


  ####################################################################
  ####################################################################
  ## END (1) Only the above bit changes from function to function   ##
  ####################################################################
  ####################################################################


  ## Output
  { # Construction of 'In' and 'Out' of control column for return results
    States <- rep("", times=N)
    States[ifelse(data < CL[, 1], TRUE, FALSE)] <- "Alarm (LL)" ; States[ifelse(data > CL[, 2], TRUE, FALSE)] <- "Alarm (UL)"
    # Return results
    PCC_summary <- data.frame(  data=data, HPrD_LL=CL[, 1], HPrD_UL=CL[, 2], Alarms=States )   }


  ## Dynamic recalculation of PCC plot's y axis
  # PCC y axis limits allowance
  Ratio <- (PCC_summary$HPrD_UL-PCC_summary$HPrD_LL)/min(PCC_summary$HPrD_UL-PCC_summary$HPrD_LL, na.rm = T)

  # Y axis limits
  AdjustedYlim <- c(min(PCC_summary$data, PCC_summary$HPrD_LL[which(Ratio<=2.5)], na.rm=T),
                    max(PCC_summary$data, PCC_summary$HPrD_UL[which(Ratio<=2.5)], na.rm=T))


  ### Output of function
  ## PCC plot
  if ( PCC_PLOT ) {
    # Creation of PCC plot
    PCC_PlotSummary <- cbind(Indices=1:N, PCC_summary)
    PCC <- ggplot2::ggplot(PCC_PlotSummary, ggplot2::aes(Indices, data)) +
      ggplot2::geom_line(ggplot2::aes(x=Indices, y=data), na.rm = TRUE) +
      ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_UL), color="red", linetype="solid", size=1, na.rm = TRUE) +
      ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_LL), color="red", linetype="solid", size=1, na.rm = TRUE) +
      ggplot2::geom_ribbon(ggplot2::aes(x=Indices, ymin=HPrD_UL, ymax=HPrD_LL, fill=TRUE), alpha=0.25, show.legend=FALSE) +
      ggplot2::scale_fill_manual(values=c("TRUE"="green")) +
      ggplot2::geom_point(ggplot2::aes(group=Indices, color=as.factor(Alarms), stroke = 1.5), show.legend=FALSE, na.rm = TRUE) +
      ggplot2::scale_color_manual(values=c("black", "red", "red"), na.value = "black") +
      ggplot2::coord_cartesian(ylim = AdjustedYlim) +
      ggplot2::labs(title = main, x = xlab, y = ylab) +
      ggplot2::theme(legend.position = "top",
                     legend.title = ggplot2::element_blank(),
                     axis.line = ggplot2::element_line(colour = "black", size = 0.5, linetype = "solid"),
                     panel.background = ggplot2::element_blank(),
                     plot.title = ggplot2::element_text(hjust = 0.5)
      )
    # Creation of PCC plot if historical data are chosen to be on the plot
    if ( !is.null(historical_data) & historical_data_PLOT ) {
      PCC_summary_historicaldata <- data.frame(  data=c(historical_data, data), HPrD_LL=c(rep(NA, times=N_historicaldata), CL[, 1]),
                                                 HPrD_UL=c(rep(NA, times=N_historicaldata), CL[, 2]), Alarms=c(rep("", times=N_historicaldata), States) )
      PCC_PlotSummary <- cbind(Indices=c(-N_historicaldata:(-1), 1:N), TypeOfdata=c(rep("Historical", times=N_historicaldata), rep("Current", times=N)), PCC_summary_historicaldata )
      PCC_historical <- ggplot2::ggplot(PCC_PlotSummary, ggplot2::aes(Indices, data)) +
        ggplot2::geom_line(ggplot2::aes(x=Indices, y=data, linetype = as.factor(TypeOfdata)), na.rm = TRUE) +
        ggplot2::geom_segment(ggplot2::aes(x = 0, y = min(HPrD_LL, na.rm=TRUE), xend = 0, yend = max(HPrD_UL, na.rm=TRUE))) +
        ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_UL), color="red", linetype="solid", size=1, na.rm = TRUE) +
        ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_LL), color="red", linetype="solid", size=1, na.rm = TRUE) +
        ggplot2::geom_ribbon(ggplot2::aes(x=Indices, ymin=HPrD_UL, ymax=HPrD_LL, fill=TRUE), alpha=0.25, show.legend=FALSE) +
        ggplot2::scale_fill_manual(values=c("TRUE"="green")) +
        ggplot2::geom_point(ggplot2::aes(group=Indices, shape=as.factor(TypeOfdata), color=as.factor(Alarms), stroke = 1.5), show.legend=FALSE, na.rm = TRUE) +
        ggplot2::scale_color_manual(values=c("black", "red", "red"), na.value = "black") +
        ggplot2::scale_linetype_manual(values=c("Historical"="dotted", "Current"="solid")) +
        ggplot2::scale_shape_manual(values=c("Historical"=1, "Current"=19)) +
        ggplot2::coord_cartesian(ylim = AdjustedYlim) +
        ggplot2::labs(title = main, x = xlab, y = ylab) +
        ggplot2::theme(legend.position = "top",
                       legend.title = ggplot2::element_blank(),
                       axis.line = ggplot2::element_line(colour = "black", size = 0.5, linetype = "solid"),
                       panel.background = ggplot2::element_blank(),
                       plot.title = ggplot2::element_text(hjust = 0.5)
        )
      print(PCC_historical)

    } else { print(PCC) }

  }
  # List of results
  if ( summary_list ) { print(PCC_summary) }

  # List of results return in pdf
  if ( pdf_report ) {

    # save pdf
    grDevices::pdf(
      paste0( "PCC_results_", paste0( unlist(strsplit(date(), " "))[c(1,2,3,5)], collapse = "_" ), "_",
              paste0( unlist(strsplit( unlist(strsplit(date(), " "))[4], ":" )), collapse = "." ),
              ".pdf" ),
      height = 8.264, width = 11.694)

    # PCC plot on pdf
    print(PCC)

    # Prior Posterior plot on pdf
    print(PrPostPLOT)

    # Results matrix on pdf
    # Chunk of code to split results matrix to different pages - Set a default number based on pdf height/width
    NRowsPerPage <- 25
    if(NRowsPerPage > nrow(PCC_summary)){ FloatingRow <- nrow(PCC_summary) } else { FloatingRow <- NRowsPerPage }
    sapply(1:ceiling(nrow(PCC_summary)/NRowsPerPage), function(index) {
      if (index==1) { StartingRow <<- 1 }
      grid::grid.newpage()
      gridExtra::grid.table(PCC_summary[StartingRow:FloatingRow, ])
      StartingRow <<- FloatingRow + 1
      if( sum(NRowsPerPage, FloatingRow) < nrow(PCC_summary)){ FloatingRow <<-  NRowsPerPage + FloatingRow } else { FloatingRow <<- nrow(PCC_summary) }
    })

    grDevices::dev.off()

  }


}



#SimData <- rlnorm(n = 30, meanlog = 0, sdlog = 1/2)
#SimData[15] <- SimData[15] + 3*sqrt( exp(1/4)*( exp(1/4)-1 ) )
#PCC_Lognormal_VarianceUnknown(SimData, ml = 0, PCC_PLOT = FALSE, PriorPosterior_PLOT = TRUE)
BayesianSPCM/BSPCM documentation built on Dec. 31, 2020, 9:53 a.m.