Description Usage Arguments Value Author(s) Examples
This function produces a p-value for every column in the datamatrix, corresponding to the null hypothesis that outcome/responsevector is independent of that feature.
| 1 2 | relevant.features.p.extended(datamatrix, responsevector,
  p.adj = "bonferroni")
 | 
| datamatrix | the data matrix with a column for each feature. | 
| responsevector | the vector of outcomes/responses (e.g. class labels). the length of this vector should match the amount of rows in datamatrix. | 
| p.adj | the adjustment method for the p-values. Any of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr' or 'none' are accepted. | 
data with the features, their (adjusted) p-values and the linear estimate for the response, one for every column in the datamatrix.
Charlie Beirnaert, charlie.beirnaert@uantwerpen.be
| 1 2 3 4 5 6 7 8 9 10 | nSamples <- 10
nFeatures <- 20
data.matrix <- matrix( stats::runif(n=nFeatures*nSamples, min=0,max=100), 
ncol = nFeatures, nrow = nSamples)
response <- c( rep(0,nSamples/2), rep(1,nSamples/2) )
p_values <- relevant.features.p.extended(datamatrix = data.matrix, responsevector = 
response, p.adj = 'none')
p_values_adjusted <- relevant.features.p.extended( datamatrix = data.matrix, 
responsevector = response, p.adj = 'bonferroni')
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.