#' replicate swo function and generate input sample sizes
#'
#' @param iters number of iterations (500 recommended)
#' @param lfreq_data input dataframe
#' @param specimen_data input dataframe
#' @param cpue_data input dataframe
#' @param strata_data input dataframe
#' @param yrs any year filter >= (default = NULL)
#' @param strata switch for regional or by strata (default = FALSE)
#' @param boot_hauls resample hauls w/replacement (default = FALSE)
#' @param boot_lengths resample lengths w/replacement (default = FALSE)
#' @param boot_ages resample ages w/replacement (default = FALSE)
#' @param length_samples sample size by length (default = NULL)
#' @param age_samples proportion of sample size by age (default = NULL)
#' @param sexlen_samples sample size by sex-length (default = NULL)
#' @param save name to save a file
#' @param write_interm save the intermediate age/length comps, the new "unsexed/unsampled" samples, and original length/age pop'n ests
#' @param region region will create a folder and place results in said folder
#'
#' @return effective sample sizes and imput sample sizes
#' @export swo_sim
#'
#' @examples
#' \dontrun{
#' swo_sim(iters=500, lfreq_data, specimen_data, cpue_data, strata_data, yrs = 2015,
#' strata = FALSE, boot_hauls = TRUE, boot_lengths = TRUE, boot_ages = FALSE,
#' length_samples = NULL, age_samples = NULL, sexlen_samples = NULL, save = "test",
#' write_interm = FALSE, region = "goa")
#'}
swo_sim <- function(iters = 1, lfreq_data, specimen_data, cpue_data, strata_data, yrs = NULL,
strata = FALSE, boot_hauls = FALSE, boot_lengths = FALSE, boot_ages = FALSE,
length_samples = NULL, age_samples = NULL, sexlen_samples = NULL, save = NULL,
write_interm = FALSE, region = NULL){
if(isTRUE(write_interm) & is.null(save) | is.null(save)){
stop("have to provide a name for the file, save = ...")
}
if(yrs > max(lfreq_data$year)) { stop("all years have been filtered from the data.")}
# create storage location
region = tolower(region)
if(!dir.exists(here::here('output', region))){
dir.create(here::here('output', region), recursive = TRUE)
}
lfreq_data <- tidytable::as_tidytable(lfreq_data)
specimen_data <- tidytable::as_tidytable(specimen_data)
cpue_data <- tidytable::as_tidytable(cpue_data)
strata_data <- tidytable::as_tidytable(strata_data)
# get original values
og <- swo(lfreq_data = lfreq_data, specimen_data = specimen_data,
cpue_data = cpue_data, strata_data = strata_data, yrs = yrs, strata = strata,
boot_hauls = FALSE, boot_lengths = FALSE, boot_ages = FALSE,
length_samples = NULL, age_samples = NULL, sexlen_samples = NULL)
oga <- og$age
ogl <- og$length
# run iterations
rr <- purrr::map(1:iters, ~ swo(lfreq_data = lfreq_data,
specimen_data = specimen_data,
cpue_data = cpue_data,
strata_data = strata_data,
yrs = yrs, strata = strata,
boot_hauls = boot_hauls,
boot_lengths = boot_lengths,
boot_ages = boot_ages,
length_samples = length_samples,
age_samples = age_samples,
sexlen_samples = sexlen_samples))
r_age <- do.call(mapply, c(list, rr, SIMPLIFY = FALSE))$age
r_length <- do.call(mapply, c(list, rr, SIMPLIFY = FALSE))$length
# write out intermediate results
if(isTRUE(write_interm)) {
vroom::vroom_write(oga, file = here::here("output", region, paste0(save, "_orig_age.csv")), delim = ",")
vroom::vroom_write(ogl, file = here::here("output", region, paste0(save, "_orig_length.csv")), delim = ",")
r_age %>%
tidytable::map_df(., ~as.data.frame(.x), .id = "sim") %>%
vroom::vroom_write(here::here("output", region, paste0(save, "_comp_age.csv")), delim = ",")
r_length %>%
tidytable::map_df(., ~as.data.frame(.x), .id = "sim") %>%
vroom::vroom_write(here::here("output", region, paste0(save, "_comp_size.csv")), delim = ",")
}
if(isTRUE(write_interm) & !is.null(length_samples) | !is.null(sexlen_samples)) {
do.call(mapply, c(list, rr, SIMPLIFY = FALSE))$nosamp %>%
tidytable::map_df(., ~as.data.frame(.x), .id = "sim") %>%
vroom::vroom_write(here::here("output", region, paste0(save, "_removed_length.csv")), delim = ",")
}
# ess of bootstrapped age/length
r_age %>%
tidytable::map(., ~ess_age(sim_data = .x, og_data = oga, strata = strata)) %>%
tidytable::map_df(., ~as.data.frame(.x), .id = "sim") -> ess_age
r_length %>%
tidytable::map(., ~ess_size(sim_data = .x, og_data = ogl, strata = strata)) %>%
tidytable::map_df(., ~as.data.frame(.x), .id = "sim") -> ess_size
ess_age %>%
tidytable::mutate(comp_type = tidytable::case_when(ess == 'ess_f' ~ 'female',
ess == 'ess_m' ~ 'male',
ess == 'ess_t' ~ 'total')) %>%
tidytable::summarise(iss = psych::harmonic.mean(value, na.rm=T),
.by = c(year, species_code, comp_type)) %>%
tidytable::filter(iss > 0) -> iss_age
ess_size %>%
tidytable::mutate(comp_type = tidytable::case_when(ess == 'ess_f' ~ 'female',
ess == 'ess_m' ~ 'male',
ess == 'ess_t' ~ 'total')) %>%
tidytable::summarise(iss = psych::harmonic.mean(value, na.rm=T),
.by = c(year, species_code, comp_type)) %>%
tidytable::filter(iss > 0) -> iss_size
# write out ess/iss results
if(!is.null(save)){
vroom::vroom_write(ess_age,
here::here("output", region, paste0(save, "_ess_ag.csv")),
delim = ",")
vroom::vroom_write(ess_size,
here::here("output", region, paste0(save, "_ess_sz.csv")),
delim = ",")
vroom::vroom_write(iss_age,
here::here("output", region, paste0(save, "_iss_ag.csv")),
delim = ",")
vroom::vroom_write(iss_size,
here::here("output", region, paste0(save, "_iss_sz.csv")),
delim = ",")
}
list(ess_age = ess_age, ess_size = ess_size, iss_age = iss_age, iss_size = iss_size)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.