#' Make inference on a homogeneous General Stochastic Epidemic.
#'
#' This function uses realistically available information from a homogeneous GSE to perform Bayesian inference and attempt to
#' recover the parameters.
#'
#' The function has the functionality to allow the fixing of some (or all) parameters. For the function parameters that begin inc.
#' a list can be fed to them of the form (true parameter value(s), TRUE/FALSE), where the TRUE dictates that inference should be
#' made for that parameter. Possible options for this list are; list(parameters, F) in which case the function will fix that parameter
#' value, list(NA, T) in which case the function will randomly generate a valid initial value for the parameter and then make inference,
#' list(parameter, T) in which case the function will initialise the parameter at its true value and then make inference, or (NA, F)
#' which we do not suggest using as it will fix the parameter at a random value.
#'
#' Gamma is always assumed to be initialised at the value 0.15.
#'
#' @param N.its The number of desired iterations of the MCMC algorithm.
#' @param N The total size of the population.
#' @param inf.ids A vectors of the IDs of the infected individuals.
#' @param rem.times A vector of the removal times, ordered by individual ID.
#' @param dist.mat An NxN distance matrix.
#' @param lambda.b The rate parameter for beta, assuming a Gamma prior.
#' @param nu.b The shape parameter for beta, assuming a Gamma prior.
#' @param lambda.g The rate parameter for gamma, assuming a Gamma prior.
#' @param nu.g The shape parameter for gamma, assuming a Gamma prior.
#' @param inc.beta A list object of 2 levels, the true value of beta1, and T/F binary value that says
#' whether to make inference on beta1 (T = make inference, see details for the different options).
#' @param inc.inf.times A list object of 2 levels; a vector of the true infection times, and T/F binary value that says
#' whether to make inference on the infection times (T = make inference, see details for the different options).
#' @param inc.gamma See inc.beta, but for the removal rate gamma.
#' @param infupdate Tuning parameter. The number of infection times that should be updated at each iteration.
#'
#' @keywords MCMC Gibbs MH Metropolis Hastings inference reparameterisation
#' @export
#'
#' @return This function returns a list object with elements; a matrix of results (which included all the accepted samples and
#' the log-likelihood at the end of each iteration), the acceptance rate of the infection times, the acceptance rate of p, and
#' the acceptance rate of d.
#'
#' @examples
#' infernce_r <- MCMC_homo(N.its, N, inf.ids, rem.times, dist.mat,
#' lambda.b = 0.001, nu.b = 1, lambda.g = 0.001 , nu.g = 1,
#' inc.beta = list(NA, T), inc.inf.times = list(NA, T), inc.gamma = list(NA, T),
#' infupdate = 1)
MCMC_homo <- function(N.its, N, inf.ids, rem.times, dist.mat,
lambda.b = 0.001, nu.b = 1, lambda.g = 0.001 , nu.g = 1,
inc.beta = list(NA, T), inc.inf.times = list(NA, T), inc.gamma = list(NA, T),
infupdate = 1){
##############################################
### Initialise the parameters and epidemic ###
##############################################
InitialiseEpi <- Initialise_2b(N=N, rem.times,
beta1.true = inc.beta[[1]], beta2.true = NA, p.true = 1,
dist.true = 1, inf.times = inc.inf.times[[1]],
d.lower = 1, d.upper = 2, dist.mat,
reparam = TRUE)
beta.cur <- InitialiseEpi[[1]]
beta2.cur <- InitialiseEpi[[2]]
p.cur <- InitialiseEpi[[3]]
dist.cur <- InitialiseEpi[[4]]
inf.times <- InitialiseEpi[[5]]
beta.mat <- Beta_mat_form(dist.mat, c(beta.cur, beta.cur), dist.cur)
######################
### Results matrix ###
######################
res <- matrix(ncol = 4, nrow = N.its)
colnames(res) <- c("sample", "beta", "gamma", "llh")
##########################
### Functional objects ###
##########################
it = 1
n.I = length(inf.ids)
acc.sum.I = 0
llh <- log_likelihood(inf.times, rem.times, beta.mat)
###########################
### ~~ THE ALGORITHM ~~ ###
###########################
while(it <= N.its){
###############################
### Gibbs sampler for gamma ###
###############################
if(inc.gamma[[2]] == T){
#Calculate the removal integral
g.ints <- sum(rem.times[inf.ids] - inf.times[inf.ids])
# Draw gamma
gamma.cur<- rgamma(n=1, shape = (n.I+nu.g), rate = (lambda.g + g.ints))
}
###############################
### Gibbs sampler for beta ###
###############################
if(inc.beta[[2]] == T){
# Form the p matrix
p.mat <- P_mat_form(dist.mat, ps = c(1, 1), 1)
# Calculate the infection integral
b.ints <- integral_part(inf.times, rem.times, p.mat, inf.ids)
# Draw beta
beta.cur <- rgamma(n=1, shape = (n.I-1+nu.b), rate = (lambda.b + b.ints))
# Calculate functional objects
beta.mat <- Beta_mat_form(dist.mat, c(beta.cur, beta.cur), 1)
llh <- log_likelihood(inf.times, rem.times, beta.mat)
}
###################################
### MH step for infection times ###
###################################
if(inc.inf.times[[2]] == T){
# Which infection time is being replaced
Ireplace <- sample(inf.ids, infupdate)
# Draw new infection time
Qdraw <- rexp(infupdate , gamma.cur)
inf.times.prime <- inf.times
inf.times.prime[Ireplace] <- rem.times[Ireplace] - Qdraw
# Calculate functional objects
llh.prime <- log_likelihood(inf.times.prime, rem.times, beta.mat)
# MH acceptance probability
alpha.I = MH_accept(llh, llh.prime)
# Do we accept the new time(s) or not?
accept.test <- runif(1,0,1)
if(accept.test < alpha.I){ #If yes:
inf.times <- inf.times.prime
llh <- llh.prime
acc.sum.I = acc.sum.I+1
}
}
##########################
### Record the results ###
##########################
# Record parameters
res[it,] <- c(it, beta.cur, gamma.cur, llh)
# Update count
it = it + 1
}
return(list(res, (acc.sum.I/N.its)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.