README.md

LMSstat

Automation of statistical test with an identical data input aiming to reduce arduous work searching for packages and changing data input.

The package includes

Contribution acknowledgement

Oct.01/2021 Daehwan Kim

Instructions

Installation

Download R

https://cran.r-project.org/bin/windows/base/

Download R Studio

https://www.rstudio.com/products/rstudio/download/

Download Rtools

https://cran.r-project.org/bin/windows/Rtools/

Download package in R

install.packages("devtools")

devtools::install_github("CHKim5/LMSstat")

library(LMSstat)

Basic structure of the Data

Used in

#Sample Data provided within the package

data("Data")

# Uploading your own Data

setwd("C:/Users/82102/Desktop")

Data<-read.csv("statT.csv",header = F)

The column "Multilevel" is mandatory for the code to run flawlessly.

If Multilevel is not used, fill the column with random characters

Datafile needs to follow the following format

Care for Capitals: Sample, Multilevel, Group

statT.csv

Used in

#Sample Data provided within the package
data("Classification")

# Uploading your own Data
Classification<-read.csv("statT_G.csv",header = F)

statT_G.csv

Univariate statistics

Statfile<-Allstats_new(Data,Adjust_p_value = T, Adjust_method = "BH") # Optimized code using lapply / data.table for faster processing contributed by Daehwan Kim

Statfile<-Allstats(Data,Adjust_p_value = T, Adjust_method = "BH") # Previous version using for-loop
Adjustable parameters
head(Statfile[["Result"]]) # includes all statistical results

write.csv(Statfile[["Result"]],"p_value_result.csv")  # Write csv with all the p-value included

Plots

# Makes a subdirectory and saves box plots for all the variables
AS_boxplot(Statfile,asterisk = "u_test") 

# Makes a subdirectory and saves dot plots for all the variables
AS_dotplot(Statfile,asterisk = "t_test") 

# Makes a subdirectory and saves bar plots for all the variables
AS_barplot(Statfile,asterisk = "Scheffe")

# Makes a subdirectory and saves violin plots for all the variables
AS_violinplot(Statfile,asterisk = "Scheffe")

          AS_boxplot(Statfile)              AS_dotplot(Statfile)

          AS_barplot(Statfile)              AS_violinplot(Statfile)

Adjustable parameters

Scaling & Transformation

scaled_data<-D_tran(Data,param = "Auto")

           Raw_Data                     Scaled_Data

Adjustable parameters

Normality check

#Shapiro Wilk test

Result<-Norm_test(Data)

write.csv(Result,"Normality_test_Result.csv")

Scheirer–Ray–Hare Test

# csv files including significant variables (Multilevel, Group, interaction) and a Venn diagram are downloaded
SRH(Data)

Adjustable parameters

Volcano plot

# Makes a subdirectory and saves Volcano plots for different combination of groups
Test<-Allstats(Data)
Volcano(Test,asterisk = "t-test")

Adjustable parameters

Heatmap

# Makes a subdirectory and saves Heatmap

scaled_data<-D_tran(Data,param = "Auto")

AS_heatmap(scaled_data) #data inheriting from D_tran

dev.off() # Saved as PDF

Adjustable parameters

Multivariate statistics

PERMANOVA

data("Data")

data("Classification") 

Single factor

PERMANOVA done with the Group column

Indiv_Perm(Data) # The group information is treated as a factor

Multiple Factors

Loops PERMANOVA over different classes provided by Classification

Result<-Multi_Perm(Data,Classification) # The group information is treated as factors

Adjustable parameters

NMDS

# Makes a subdirectory and saves NMDS plots for all of the distance metrics
NMDS(Data,methods = c("manhattan","bray","euclidean"))

NMDS plot with bray distance and p-value from PERMANOVA

Adjustable parameters

PCA

# Makes a subdirectory and saves PCA plot
PCA(Data,components = c(1,2),legend_position = "none"))

PCA plot with selected components

Adjustable parameters

PCoA

# Makes a subdirectory and saves PCoA plot
PCoA(Data,components = c(1,2),methods = c("bray", "manhattan"))

PCoA plot with selected components

Adjustable parameters


CHKim5/LMSstat documentation built on Dec. 17, 2021, 12:55 p.m.