# 本代码用于检查clusterId年分布变化
source("scripts/main_pkgs.R")
load_all("/mnt/i/Research/phenology/latticeMap.R")
load_all()
InitCluster(6, kill = FALSE)
{
sp_line <- path.mnt("N:/github/Research/Rcmip5/inst/extdata/shp/bou1_4l_south_sml.shp") %>%
read_sf() %>%
as_Spatial() %>%
list("sp.lines", ., lwd = 0.4)
date <- seq(as.Date("1961-01-01"), as.Date("2016-12-31"), by = "day")
grid <- grid_d025
}
files = dir("OUTPUT/clusterId", "*.RDS", full.names = TRUE)#[1]
foreach(file = files, i = icount()) %dopar% {
runningId(i)
outfile <- gsub(".RDS$", ".pdf", file)
if (file.exists(outfile)) return()
clusterId = readRDS(file)
# outfile <- glue("Figures/Figure_S01_Tavg_perc{prob*100}_Annual_HWD.pdf")
mat <- apply_3d(!is.na(clusterId), by = year(date), FUN = rowSums2)
df <- array_3dTo2d(mat) %>%
as.data.table() %>%
set_colnames(paste0("x", 1961:2016))
data <- df %>%
cbind(I = 1:nrow(.), .) %>%
melt("I")
{
brks <- c(-Inf, 0, 1:5, 10, 20, 30, Inf) # days
cols <- get_color(rcolors$amwg256, length(brks) - 1)
cols[1] <- "white"
p <- sp_plot(grid, data,
formula = value ~ lon + lat | variable,
brks = brks, colors = cols, key.num2factor = TRUE,
colorkey = list(space = "bottom", labels = list(cex = 1.4)),
aspect = 0.7,
layout = c(7, 8),
# sp.layout = sp_line,
par.settings2 = list(axis.line = list(col = "black"))
) +
layer_title(labels = 1961:2016, hjust = -0.1, vjust = 1.2) +
theme_lattice(plot.margin = c(1, 1, 2, 1))
write_fig(p, outfile, 15, 10, show = FALSE)
}
gc()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.