Description Usage Arguments Details Value Author(s) See Also Examples
Creates an SS-object describing a Gaussian state space model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  | SS(y = NA, x = list(x = NA),
   Fmat = function(tt,x,phi) { return(matrix(1)) },
   Gmat = function(tt,x,phi) { return(matrix(1)) },
   Vmat = function(tt,x,phi) { return(matrix(phi[1])) },
   Wmat = function(tt,x,phi) { return(matrix(phi[2])) },
   m0 = matrix(0),
   C0 = matrix(100),
   phi = c(1,1))
## S3 method for class 'SS'
C0(ssm) 
## S3 method for class 'SS'
m0(ssm) 
## S3 method for class 'SS'
Fmat(ssm)
## S3 method for class 'SS'
Gmat(ssm)
## S3 method for class 'SS'
Vmat(ssm)
## S3 method for class 'SS'
Wmat(ssm)
## S3 method for class 'SS'
phi(ssm) 
## S3 replacement method for class 'SS'
C0(ssm) <- value
## S3 replacement method for class 'SS'
m0(ssm) <- value
## S3 replacement method for class 'SS'
Fmat(ssm) <- value
## S3 replacement method for class 'SS'
Gmat(ssm) <- value
## S3 replacement method for class 'SS'
Vmat(ssm) <- value
## S3 replacement method for class 'SS'
Wmat(ssm) <- value
## S3 replacement method for class 'SS'
phi(ssm) <- value
 | 
y | 
 a matrix giving a multivariate time series of
observations. The observation at time   | 
x | 
 a list of entities (eg. covariates) passed as argument to the functions
  | 
Fmat | 
 a function depending on the parameter-vector   | 
Gmat | 
 a function depending on the parameter-vector   | 
Vmat | 
 a function depending on the parameter-vector   | 
Wmat | 
 a function depending on the parameter-vector   | 
m0 | 
 a 1 \times p matrix giving the initial state.  | 
C0 | 
 a p \times p variance matrix giving the variance matrix of the initial state.  | 
phi | 
 a (hyper) parameter vector passed as argument to the functions   | 
ssm | 
 an object of class   | 
value | 
 an object to be assigned to the element of the state space model.  | 
The state space model is given by
Y_t = F_t^T * θ_t + v_t, v_t ~ N(0,V_t)
θ_t = G_t * θ_{t-1} + w_t, w_t ~ N(0,W_t)
for t=1,...,n. The matrices F_t, G_t, V_t, and W_t may depend on a parameter vector φ. The initialization is given as
θ_0 ~ N(m_0,C_0).
An object of class SS, which is a list with the following components
y | 
 as input.  | 
x | 
 as input.  | 
Fmat | 
 as input.  | 
Gmat | 
 as input.  | 
Vmat | 
 as input.  | 
Wmat | 
 as input.  | 
m0 | 
 as input.  | 
C0 | 
 as input.  | 
phi | 
 as input.  | 
n | 
 the number of time points  | 
d | 
 the dimension of each observation.  | 
p | 
 the dimension of the state vector at each timepoint.  | 
ytilde | 
 adjusted observations for use in the extended Kalman
filter, see   | 
iteration | 
 an integer giving the number of iterations used in
the extended Kalman filter, see   | 
m | 
 after Kalman filtering (or smoothing), holds the conditional
mean of the state vectors given the observations up till time t
(filtering) or all observations (smoothing). This is organised in a
n \times p dimensional matrix holding m_t (m_t^*)
in rows. Is returned as a   | 
C | 
 after Kalman filtering (or smoothing), holds the conditional variance of the state vectors given the observations up til time t (filtering) or all observations (smoothing). This is organised in a list holding the p \times p dimensional matrices C_t (C_t^*).  | 
mu | 
 after Kalman smoothing, holds the conditional mean of the signal (μ_t=F_t^\top θ_t) given all observations. This is organised in a n \times d dimensional matrix holding μ_t in rows.  | 
loglik | 
 the log-likelihood value after Kalman filtering.  | 
Claus Dethlefsen, Søren Lundbye-Christensen and Anette Luther Christensen
ssm for a glm-like interface of specifying
models, kfilter for Kalman filter and
smoother for Kalman smoother.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  | data(kurit)  ## West & Harrison, page 40
m1 <- SS(y=kurit,
         Fmat=function(tt,x,phi) return(matrix(1)),
         Gmat=function(tt,x,phi) return(matrix(1)),
         Wmat=function(tt,x,phi) return(matrix(5)), ## Alternatively Wmat=matrix(5)
         Vmat=function(tt,x,phi) return(matrix(100)), ## Alternatively Vmat=matrix(100)
         m0=matrix(130),C0=matrix(400)
         )
plot(m1$y)
m1.f <- kfilter(m1)
m1.s <- smoother(m1.f)
lines(m1.f$m,lty=2,col=2)
lines(m1.s$m,lty=2,col=2)
## make a model with an intervention at time 10
m2 <- m1
Wmat(m2) <- function(tt,x,phi) {
  if (tt==10) return(matrix(900))
  else return(matrix(5))
}
m2.f <- kfilter(m2)
m2.s <- smoother(m2.f)
lines(m2.f$m,lty=2,col=4)
lines(m2.s$m,lty=2,col=4)
## Use 'ssm' to construct an SS skeleton
phi.start <- StructTS(log10(UKgas),type="BSM")$coef[c(4,1,2,3)]
gasmodel <- ssm( log10(UKgas) ~ -1+
                 tvar(polytime(time,1))+
                 tvar(sumseason(time,12)),
                 phi=phi.start)
m0(gasmodel)
C0(gasmodel)
phi(gasmodel)
fit <- getFit(gasmodel)
plot( fit$m[,1:3]  )
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.