Description Usage Arguments Details Value Author(s) See Also Examples
Creates an SS-object describing a Gaussian state space model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | SS(y = NA, x = list(x = NA),
Fmat = function(tt,x,phi) { return(matrix(1)) },
Gmat = function(tt,x,phi) { return(matrix(1)) },
Vmat = function(tt,x,phi) { return(matrix(phi[1])) },
Wmat = function(tt,x,phi) { return(matrix(phi[2])) },
m0 = matrix(0),
C0 = matrix(100),
phi = c(1,1))
## S3 method for class 'SS'
C0(ssm)
## S3 method for class 'SS'
m0(ssm)
## S3 method for class 'SS'
Fmat(ssm)
## S3 method for class 'SS'
Gmat(ssm)
## S3 method for class 'SS'
Vmat(ssm)
## S3 method for class 'SS'
Wmat(ssm)
## S3 method for class 'SS'
phi(ssm)
## S3 replacement method for class 'SS'
C0(ssm) <- value
## S3 replacement method for class 'SS'
m0(ssm) <- value
## S3 replacement method for class 'SS'
Fmat(ssm) <- value
## S3 replacement method for class 'SS'
Gmat(ssm) <- value
## S3 replacement method for class 'SS'
Vmat(ssm) <- value
## S3 replacement method for class 'SS'
Wmat(ssm) <- value
## S3 replacement method for class 'SS'
phi(ssm) <- value
|
y |
a matrix giving a multivariate time series of
observations. The observation at time |
x |
a list of entities (eg. covariates) passed as argument to the functions
|
Fmat |
a function depending on the parameter-vector |
Gmat |
a function depending on the parameter-vector |
Vmat |
a function depending on the parameter-vector |
Wmat |
a function depending on the parameter-vector |
m0 |
a 1 \times p matrix giving the initial state. |
C0 |
a p \times p variance matrix giving the variance matrix of the initial state. |
phi |
a (hyper) parameter vector passed as argument to the functions |
ssm |
an object of class |
value |
an object to be assigned to the element of the state space model. |
The state space model is given by
Y_t = F_t^T * θ_t + v_t, v_t ~ N(0,V_t)
θ_t = G_t * θ_{t-1} + w_t, w_t ~ N(0,W_t)
for t=1,...,n. The matrices F_t, G_t, V_t, and W_t may depend on a parameter vector φ. The initialization is given as
θ_0 ~ N(m_0,C_0).
An object of class SS
, which is a list with the following components
y |
as input. |
x |
as input. |
Fmat |
as input. |
Gmat |
as input. |
Vmat |
as input. |
Wmat |
as input. |
m0 |
as input. |
C0 |
as input. |
phi |
as input. |
n |
the number of time points |
d |
the dimension of each observation. |
p |
the dimension of the state vector at each timepoint. |
ytilde |
adjusted observations for use in the extended Kalman
filter, see |
iteration |
an integer giving the number of iterations used in
the extended Kalman filter, see |
m |
after Kalman filtering (or smoothing), holds the conditional
mean of the state vectors given the observations up till time t
(filtering) or all observations (smoothing). This is organised in a
n \times p dimensional matrix holding m_t (m_t^*)
in rows. Is returned as a |
C |
after Kalman filtering (or smoothing), holds the conditional variance of the state vectors given the observations up til time t (filtering) or all observations (smoothing). This is organised in a list holding the p \times p dimensional matrices C_t (C_t^*). |
mu |
after Kalman smoothing, holds the conditional mean of the signal (μ_t=F_t^\top θ_t) given all observations. This is organised in a n \times d dimensional matrix holding μ_t in rows. |
loglik |
the log-likelihood value after Kalman filtering. |
Claus Dethlefsen, Søren Lundbye-Christensen and Anette Luther Christensen
ssm
for a glm-like interface of specifying
models, kfilter
for Kalman filter and
smoother
for Kalman smoother.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | data(kurit) ## West & Harrison, page 40
m1 <- SS(y=kurit,
Fmat=function(tt,x,phi) return(matrix(1)),
Gmat=function(tt,x,phi) return(matrix(1)),
Wmat=function(tt,x,phi) return(matrix(5)), ## Alternatively Wmat=matrix(5)
Vmat=function(tt,x,phi) return(matrix(100)), ## Alternatively Vmat=matrix(100)
m0=matrix(130),C0=matrix(400)
)
plot(m1$y)
m1.f <- kfilter(m1)
m1.s <- smoother(m1.f)
lines(m1.f$m,lty=2,col=2)
lines(m1.s$m,lty=2,col=2)
## make a model with an intervention at time 10
m2 <- m1
Wmat(m2) <- function(tt,x,phi) {
if (tt==10) return(matrix(900))
else return(matrix(5))
}
m2.f <- kfilter(m2)
m2.s <- smoother(m2.f)
lines(m2.f$m,lty=2,col=4)
lines(m2.s$m,lty=2,col=4)
## Use 'ssm' to construct an SS skeleton
phi.start <- StructTS(log10(UKgas),type="BSM")$coef[c(4,1,2,3)]
gasmodel <- ssm( log10(UKgas) ~ -1+
tvar(polytime(time,1))+
tvar(sumseason(time,12)),
phi=phi.start)
m0(gasmodel)
C0(gasmodel)
phi(gasmodel)
fit <- getFit(gasmodel)
plot( fit$m[,1:3] )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.