devtools::load_all()
MTandem_obj <- MetaboTandem$new() MTandem_obj$load_metadata(metadata_file = 'test_data/metadata_QC.csv') # MTandem_obj$metadata <- MTandem_obj$metadata %>% # dplyr::mutate(FileName = 'Z:/PhD_stuff/QC_lcmsms_centroided/RP_Pos_QC_Mix_Start.mzML') MTandem_obj$metadata # autotuner_obj <- start_autotuner(MTandem_obj$metadata, # group = 'treatment', # lag = 25, # threshold = 3.1, # influence = .1, # plot = TRUE) # # autotuner_params <- extract_autotuner(autotuner_obj, # massThr = 0.005) MTandem_obj$load_spectra_data('Z:/PhD_stuff/QC_lcmsms_centroided/') MTandem_obj$centroid_check()
# test_peak_picking(MTandem_obj$data, # mz_range = c(300, 310), # rt_range = c(440, 550), # p_width = c(20, 100), # snt = 3, # noise = 1e6, # cores = 10) MTandem_obj$apply_peak_picking(method = 'cw', ppm = 25, p_width = c(1, 20), snt = 3, noise = 1e7, prefilter = c(2, 1e4), mz_diff = 0.001, cores = 10) # MTandem_obj$apply_peak_refinement(expand_rt = 2, # expand_mz = 0, # ppm = 10, # min_prop = 0.75) xcms::hasChromPeaks(MTandem_obj$data) xcms::chromPeaks(MTandem_obj$data) %>% tidyr::as_tibble() %>% dplyr::group_by(sample) %>% dplyr::count() %>% cbind(SampleID = MsExperiment::sampleData(MTandem_obj$data)$SampleID) %>% dplyr::ungroup() %>% dplyr::select(SampleID, Num_peaks = n)
MTandem_obj$apply_alignment(method = 'pg', group_by = 'treatment', bin_size = 0.25, ppm = 0, min_fraction = 0.9, extra_peaks = 1, smooth = 'loess', span = 1, family = 'gaussian') treatment_colors <- setNames(ggpubr::get_palette('Dark2', length(unique(MTandem_obj$metadata$treatment))), nm = unique(MTandem_obj$metadata$treatment)) col_vector <- treatment_colors[MTandem_obj$metadata$treatment] xcms::plotAdjustedRtime(MTandem_obj$data, col = col_vector, lwd = 1.5, cex = .7) legend('topleft', legend = names(treatment_colors), col = treatment_colors, lty = rep(1, length(treatment_colors)), cex = .8, lwd = rep(2, length(treatment_colors))) MTandem_obj$apply_correspondence(method = 'pd', group_by = 'treatment')
MTandem_obj$extract_feature_definitions() ft <- MTandem_obj$feature_definitions %>% dplyr::select(feature_id, mz, rtime) qc_table <- readxl::read_xlsx('Z:/PhD_stuff/QC_lcmsms/QC_Mix_compounds_mod.xlsx') %>% dplyr::mutate(std_rt = `RP RT (min)` * 60) %>% dplyr::select(Compound, Formula, std_mz = `m/z pos`, std_rt) all <- dplyr::cross_join(ft, qc_table) %>% dplyr::mutate(ppm_error = (mz - std_mz)/std_mz * 1e6, rt_error = rtime - std_rt) %>% dplyr::filter(abs(ppm_error) < 5, abs(rt_error) < 6) MTandem_obj$extract_feature_spectra() MTandem_obj$feature_spectra MTandem_obj$get_annotation_tables() MTandem_obj$merge_annotation_tables() annot <- MTandem_obj$annotation_merged zz <- all %>% dplyr::left_join(annot, by = 'feature_id') res <- readr::read_csv('Z:/PhD_stuff/QC_lcmsms/res_annot.csv') %>% tidyr::pivot_longer(!c(Compound, Software), names_to = 'type', values_to = 'value') plot <- res %>% dplyr::mutate(type = factor(type, levels = c('Peak detected', 'Correctly annotated'))) %>% ggplot2::ggplot() + ggplot2::geom_tile(ggplot2::aes(x = type, y = Compound, fill = value), color = 'white', show.legend = FALSE) + ggplot2::facet_wrap(~Software) + ggplot2::scale_fill_manual(values = c('steelblue'), na.value = 'white') + ggplot2::theme_bw()+ ggplot2::theme(panel.grid = ggplot2::element_blank()) plot cd_res <- readxl::read_xlsx('Z:/PhD_stuff/QC_lcmsms/QC_cd.xlsx') %>% dplyr::select(Name, mz = `m/z`, rtime = `RT [min]` ) %>% dplyr::mutate(rtime = rtime * 60) all_cd <- dplyr::cross_join(cd_res, qc_table) %>% dplyr::mutate(ppm_error = (mz - std_mz)/std_mz * 1e6, rt_error = rtime - std_rt) %>% dplyr::filter(abs(ppm_error) < 5, abs(rt_error) < 6)
# MTandem_obj$apply_gap_filling(cores = 10) # # xcms::hasFilledChromPeaks(MTandem_obj$data)
MTandem_obj$extract_abundance_table() MTandem_obj$filter_and_normalize(min_perc_samples = 100, filter_method = 'iqr', perc_remove = 10, norm_method = 'global', log_transform = TRUE) MTandem_obj$calculate_ordination(method = 'nmds', distance = 'bray') MTandem_obj$plot_ordination(group_by = 'treatment') calculate_clustering(MTandem_obj$norm_abundance_table, MTandem_obj$metadata, color_by = 'treatment', k = 2, add_kmeans = TRUE)
MTandem_obj$differential_analysis(group = 'treatment', control_condition = 'CTR', treatment_condition = 'WP') MTandem_obj$plot_volcano(pval_thres = 0.05, log2fc_thres = 1, use_adjusted_pval = FALSE) MTandem_obj$fit_models(model_type = 'lm', vars = 'moist') MTandem_obj$check_model() MTandem_obj$checked_models
MTandem_obj$test_contrasts(L = c(0, 1)) MTandem_obj$contrasts_results MTandem_obj$plot_model_sig_features(color_by = 'treatment', cluster_samp = TRUE, cluster_feat = TRUE)
MTandem_obj$extract_feature_definitions() MTandem_obj$feature_definitions MTandem_obj$extract_feature_spectra() MTandem_obj$feature_spectra
MTandem_obj$get_annotation_tables() MTandem_obj$merge_annotation_tables() plot_mirror(MTandem_obj$annotation_tables$ms2_matches, MTandem_obj$annotation_merged, feature_id = 'FT0168')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.