tRNA_class | R Documentation |
Classifying tRFs/tsRNA into 5'-tRF/halves, 3'-tRFs/halves, i'-tRFs/halves, as well as acceptor and decoder isotypes.
tRNA_class(PAC, map, terminal = 5)
PAC |
PAC-list object. |
map |
Map object with loop annotations generated by
|
terminal |
Integer setting the terminal tolerance. Example, when
terminal is set to 5 (default) sequenced reads starting within the 5 first
nucleotides of the full-length tRNA reference will be classifed as 5'. If
it instead ends within the 5 last nucleotides of the full-length tRNA
reference it will be classified as 3'. If a read neither starts nor ends
within the terminal threshold it will be classified as i' (internal). Note,
for tsRNA/tRF classification we recommend a threshold of terminal=2 (not
default). Advisably, however, |
Given a map object with range types generated by
PAC_mapper
followed by
map_rangetype
functions, sequences in a PAC object are
classified according the terminals (5'/3'/i'), anticodon loop (half/tRF), and
isotype (decoder/acceptor) of the full length tRNA.
Merged PAC object with an extended Anno table containing the tRF/tsRNA classifications.
https://github.com/Danis102 for updates on the current package.
Other PAC analysis:
PAC_covplot()
,
PAC_deseq()
,
PAC_filter()
,
PAC_filtsep()
,
PAC_gtf()
,
PAC_jitter()
,
PAC_mapper()
,
PAC_nbias()
,
PAC_norm()
,
PAC_pca()
,
PAC_pie()
,
PAC_saturation()
,
PAC_sizedist()
,
PAC_stackbar()
,
PAC_summary()
,
PAC_trna()
,
as.PAC()
,
filtsep_bin()
,
map_rangetype()
# Important: See ?PAC_trna on how to do tRNA analysis using Seqpac
#'###########################################################
### tRNA classification in seqpac
# (More details see vignette and manuals.)
##-------------------------------##
## Setup environment for testing ##
# First create an annotation blank PAC with group means
load(system.file("extdata", "drosophila_sRNA_pac_filt_anno.Rdata",
package = "seqpac", mustWork = TRUE))
anno(pac) <- anno(pac)[,1, drop=FALSE]
pac_trna <- PAC_summary(pac, norm = "cpm", type = "means",
pheno_target=list("stage"), merge_pac = TRUE)
# Then load paths to example trna ref and ss files
trna_ref <- system.file("extdata/trna2", "tRNA2.fa",
package = "seqpac", mustWork = TRUE)
ss_file <- system.file("extdata/trna2", "tRNA2.ss",
package = "seqpac", mustWork = TRUE)
##--------------------------------------##
## Create a map object using PAC_mapper ##
map_object <- PAC_mapper(pac_trna, ref=trna_ref,
N_up = "NNN", N_down = "NNN",
mismatches=0, threads=2,
report_string=TRUE, override = TRUE)
# Warning: override = TRUE, will remove everything in temporary output path.
# Note: bowtie indexes are not needed for PAC_mapper.
##-------------------------------------------##
## Classify tRNA fragment with map_rangetype ##
# Classify according to loop structure using ss file provided with seqpac
map_object_ss <- map_rangetype(map_object, type="ss", ss=ss_file,
min_loop_width=4)
# Note 1: You may download your own ss file at for example GtRNAdb
# Note 2: The ss file must match the reference used in creating the map_object
map_object_ss[[1]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.