# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/lineage/artifact.py
#' @include lineage_api_types.R
#' @include lineage_utils.R
#' @include lineage_association.R
#' @import R6
#' @import sagemaker.core
# An Amazon SageMaker artifact, which is part of a SageMaker lineage.
# Examples:
# .. code-block:: python
# from sagemaker.lineage import artifact
# my_artifact = artifact.Artifact.create(
# artifact_name='MyArtifact',
# artifact_type='S3File',
# source_uri='s3://...')
# my_artifact.properties["added"] = "property"
# my_artifact.save()
# for artfct in artifact.Artifact.list():
# print(artfct)
# my_artifact.delete()
Artifact = R6Class("Artifact",
inherit = Record,
public = list(
# artifact_arn (str): The ARN of the artifact.
artifact_arn=NULL,
# artifact_name (str): The name of the artifact.
artifact_name=NULL,
# artifact_type (str): The type of the artifact.
artifact_type=NULL,
# source (obj): The source of the artifact with a URI and types.
source=NULL,
# properties (dict): Dictionary of properties.
properties=NULL,
# tags (List[dict[str, str]]): A list of tags to associate with the artifact.
tags=NULL,
# creation_time (datetime): When the artifact was created.
creation_time=NULL,
# created_by (obj): Contextual info on which account created the artifact.
created_by=NULL,
# last_modified_time (datetime): When the artifact was last modified.
last_modified_time=NULL,
# last_modified_by (obj): Contextual info on which account created the artifact.
last_modified_by=NULL,
# Save the state of this Artifact to SageMaker.
# Note that this method must be run from a SageMaker context such as Studio or a training job
# due to restrictions on the CreateArtifact API.
# Returns:
# Artifact: A SageMaker `Artifact` object.
save = function(){
return(private$.invoke_api(private$.paws_update_method, private$.paws_update_members))
},
# Delete the artifact object.
# Args:
# disassociate (bool): When set to true, disassociate incoming and outgoing association.
delete = function(disassociate=FALSE){
if (disassociate){
LineageUtils$new()$disassociate(
source_arn=self$artifact_arn,
sagemaker_session=self$sagemaker_session)
LineageUtils$new()$disassociate(
destination_arn=self$artifact_arn,
sagemaker_session=self$sagemaker_session)
}
return(private$.invoke_api(
private$.paws_delete_method, private$.paws_delete_members))
},
# Load an existing artifact and return an ``Artifact`` object representing it.
# Args:
# artifact_arn (str): ARN of the artifact
# sagemaker_session (sagemaker.session.Session): Session object which
# manages interactions with Amazon SageMaker APIs and any other
# AWS services needed. If not specified, one is created using the
# default AWS configuration chain.
# Returns:
# Artifact: A SageMaker ``Artifact`` object
load = function(artifact_arn, sagemaker_session=NULL){
artifact = private$.construct(
private$.paws_load_method,
artifact_arn=artifact_arn,
sagemaker_session=sagemaker_session)
return(artifact)
},
# Retrieve all trial runs which that use this artifact.
# Args:
# sagemaker_session (obj): Sagemaker Sesssion to use. If not provided a default session
# will be created.
# Returns:
# [Trial]: A list of SageMaker `Trial` objects.
downstream_trials = function(sagemaker_session=NULL){
# don't specify destination type because for Trial Components it could be one of
# SageMaker[TrainingJob|ProcessingJob|TransformJob|ExperimentTrialComponent]
outgoing_associations = Association$new()$list(
source_arn=self$artifact_arn, sagemaker_session=sagemaker_session)
trial_component_arns = list(Map(function(x) x$destination_arn, outgoing_associations))
if (islistempty(trial_component_arns)){
# no outgoing associations for this artifact
return(list())
}
# TODO: smexperiments package: https://github.com/aws/sagemaker-experiments
TrialComponent = pkg_method(fun="TrialComponent", pkg="smexperiments")
search_expression = Map(
pkg_method, c("Filter","Operator", "SearchExpression","BooleanOperator"),
pkg = "smexperiments")
max_search_by_arn = 60
num_search_batches = ceiling(length(trial_component_arns) %% max_search_by_arn)
trial_components = list()
sagemaker_session = sagemaker_session %||% Session$new()
sagemaker_client = sagemaker_session$sagemaker
for (i in seq_len(num_search_batches)){
start = as.integer(i * max_search_by_arn)
end = start + max_search_by_arn
arn_batch = as.list(trial_component_arns[start:end])
se = private$.get_search_expression(arn_batch, search_expression)
search_result = TrialComponent$new()$search(
search_expression=se, sagemaker_paws_client=sagemaker_client)
trial_components = c(trial_components, list(search_result))
}
for (tc in list(trial_components)){
for (parent in tc$parents){
trials = c(trials, parent[["TrialName"]])
}
}
return(unquie(trials))
},
# Add a tag to the object.
# Args:
# tag (obj): Key value pair to set tag.
# Returns:
# list({str:str}): a list of key value pairs
set_tag = function(tag=NULL){
return(private$.set_tags(resource_arn=self$artifact_arn, tags=list(tag)))
},
# Add tags to the object.
# Args:
# tags ([{key:value}]): list of key value pairs.
# Returns:
# list({str:str}): a list of key value pairs
set_tags = function(tags=NULL){
return(private$.set_tags(resource_arn=self$artifact_arn, tags=tags))
},
# Create an artifact and return an ``Artifact`` object representing it.
# Args:
# artifact_name (str, optional): Name of the artifact
# source_uri (str, optional): Source URI of the artifact
# source_types (list, optional): Source types
# artifact_type (str, optional): Type of the artifact
# properties (dict, optional): key/value properties
# tags (dict, optional): AWS tags for the artifact
# sagemaker_session (sagemaker.session.Session): Session object which
# manages interactions with Amazon SageMaker APIs and any other
# AWS services needed. If not specified, one is created using the
# default AWS configuration chain.
# Returns:
# Artifact: A SageMaker ``Artifact`` object.
create = function(artifact_name=NULL,
source_uri=NULL,
source_types=NULL,
artifact_type=NULL,
properties=NULL,
tags=NULL,
sagemaker_session=NULL){
return(super$.construct(
private$.paws_create_method,
artifact_name=artifact_name,
source=ArtifactSource$new(source_uri=source_uri, source_types=source_types),
artifact_type=artifact_type,
properties=properties,
tags=tags,
sagemaker_session=sagemaker_session)
)
},
# Return a list of artifact summaries.
# Args:
# source_uri (str, optional): A source URI.
# artifact_type (str, optional): An artifact type.
# created_before (datetime.datetime, optional): Return artifacts created before this
# instant.
# created_after (datetime.datetime, optional): Return artifacts created after this
# instant.
# sort_by (str, optional): Which property to sort results by.
# One of 'SourceArn', 'CreatedBefore','CreatedAfter'
# sort_order (str, optional): One of 'Ascending', or 'Descending'.
# max_results (int, optional): maximum number of artifacts to retrieve
# next_token (str, optional): token for next page of results
# sagemaker_session (sagemaker.session.Session): Session object which
# manages interactions with Amazon SageMaker APIs and any other
# AWS services needed. If not specified, one is created using the
# default AWS configuration chain.
# Returns:
# collections.Iterator[ArtifactSummary]: An iterator
# over ``ArtifactSummary`` objects.
list = function(source_uri=NULL,
artifact_type=NULL,
created_before=NULL,
created_after=NULL,
sort_by=NULL,
sort_order=NULL,
max_results=NULL,
next_token=NULL,
sagemaker_session=NULL){
return(super$.list(
"list_artifacts",
ArtifactSummary$new()$from_paws,
"ArtifactSummaries",
source_uri=source_uri,
artifact_type=artifact_type,
created_before=created_before,
created_after=created_after,
sort_by=sort_by,
sort_order=sort_order,
max_results=max_results,
next_token=next_token,
sagemaker_session=sagemaker_session)
)
}
),
private = list(
.paws_create_method = "create_artifact",
.paws_load_method = "describe_artifact",
.paws_update_method = "update_artifact",
.paws_delete_method = "delete_artifact",
.paws_update_members = list(
"artifact_arn",
"artifact_name",
"properties",
"properties_to_remove"),
.paws_delete_members = "artifact_arn",
.custom_paws_types = list("source"= list(ArtifactSource, FALSE)),
# Convert a set of arns to a search expression.
# Args:
# arns (list): Trial Component arns to search for.
# search_expression (obj): smexperiments.search_expression
# Returns:
# search_expression (obj): Arns converted to a Trial Component search expression.
.get_search_expression = function(arns, search_expression){
max_arn_per_filter = 3L
num_filters = ceiling(lengths(arns) / max_arn_per_filter)
filters = list()
for (i in seq_len(num_filters)){
start = i * max_arn_per_filter
end = i + max_arn_per_filter
batch_arns: list = arns[start:end]
search_filter = search_expression$Filter$new(
name="TrialComponentArn",
operator=search_expression$Operator$new()$EQUALS,
value=paste(batch_arns, collapse = ","))
filters = c(filters, search_filter)
}
search_expression = search_expression$SearchExpression$new(
filters=filters,
boolean_operator=search_expression$BooleanOperator$new()$OR)
return(search_expression)
}
),
lock_objects = F
)
# A SageMaker lineage artifact representing a model.
# Common model specific lineage traversals to discover how the model is connected
# to otherentities.
ModelArtifact = R6Class("ModelArtifact",
inherit = Artifact,
public = list(
# Given a model artifact, get all associated endpoint context.
# Returns:
# [AssociationSummary]: A list of associations repesenting the endpoints using the model.
endpoints = function(){
endpoint_development_actions = Association$new()$list(
source_arn=self$artifact_arn,
destination_type="Action",
sagemaker_session=self$sagemaker_session)
endpoint_context_list = unlist(lapply(
endpoint_development_actions,
function(endpoint_development_action){
Association$list$new(
source_arn=endpoint_development_action$destination_arn,
destination_type="Context",
sagemaker_session=self$sagemaker_session)
}), recursive = FALSE)
return(endpoint_context_list)
}
),
lock_objects = F
)
# A SageMaker Lineage artifact representing a dataset.
# Encapsulates common dataset specific lineage traversals to discover how the dataset is
# connect to related entities.
DatasetArtifact = R6Class("DatasetArtifact",
inherit = Artifcat,
public = list(
# Given a dataset artifact, get associated trained models.
# Returns:
# list(Association): List of Contexts representing model artifacts.
trained_models = function(){
trial_components = Association$new()$list(
source_arn=self$artifact_arn, sagemaker_session=self$sagemaker_session)
result = list()
for (trial_component in trial_components){
if ("experiment-trial-component" %in% names(trial_component.destination_arn)){
models = Association$new()$list(
source_arn=trial_component$destination_arn,
destination_type="Context",
sagemaker_session=self$sagemaker_session)
result = c(result, models)
}
}
return(result)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.