CandidateEstimator: CandidateEstimator Class

CandidateEstimatorR Documentation

CandidateEstimator Class

Description

A class for SageMaker AutoML Job Candidate

Methods

Public methods


Method new()

Constructor of CandidateEstimator.

Usage
CandidateEstimator$new(candidate, sagemaker_session = NULL)
Arguments
candidate

(dict): a dictionary of candidate returned by AutoML.list_candidates() or AutoML.best_candidate().

sagemaker_session

(sagemaker.session.Session): A SageMaker Session object, used for SageMaker interactions (default: None). If not specified, one is created using the default AWS configuration chain.


Method get_steps()

Get the step job of a candidate so that users can construct estimators/transformers

Usage
CandidateEstimator$get_steps()
Returns

list: a list of dictionaries that provide information about each step job's name, type, inputs and description


Method fit()

Rerun a candidate's step jobs with new input datasets or security config.

Usage
CandidateEstimator$fit(
  inputs,
  candidate_name = NULL,
  volume_kms_key = NULL,
  encrypt_inter_container_traffic = FALSE,
  vpc_config = NULL,
  wait = TRUE,
  logs = TRUE
)
Arguments
inputs

(str or list[str]): Local path or S3 Uri where the training data is stored. If a local path is provided, the dataset will be uploaded to an S3 location.

candidate_name

(str): name of the candidate to be rerun, if None, candidate's original name will be used.

volume_kms_key

(str): The KMS key id to encrypt data on the storage volume attached to the ML compute instance(s).

encrypt_inter_container_traffic

(bool): To encrypt all communications between ML compute instances in distributed training. Default: False.

vpc_config

(dict): Specifies a VPC that jobs and hosted models have access to. Control access to and from training and model containers by configuring the VPC

wait

(bool): Whether the call should wait until all jobs completes (default: True).

logs

(bool): Whether to show the logs produced by the job. Only meaningful when wait is True (default: True).


Method format()

format class

Usage
CandidateEstimator$format()

Method clone()

The objects of this class are cloneable with this method.

Usage
CandidateEstimator$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


DyfanJones/sagemaker-r-mlframework documentation built on March 18, 2022, 7:41 a.m.