KMeansModel | R Documentation |
Calling :meth:'~sagemaker.model.Model.deploy' creates an Endpoint and return a Predictor to performs k-means cluster assignment.
sagemaker.mlcore::ModelBase
-> sagemaker.mlcore::Model
-> KMeansModel
new()
Initialize KMeansPredictor Class
KMeansModel$new(model_data, role, sagemaker_session = NULL, ...)
model_data
(str): The S3 location of a SageMaker model data “.tar.gz“ file.
role
(str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs that create Amazon SageMaker endpoints use this role to access training data and model artifacts. After the endpoint is created, the inference code might use the IAM role, if it needs to access an AWS resource.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain.
...
: Keyword arguments passed to the “FrameworkModel“ initializer.
clone()
The objects of this class are cloneable with this method.
KMeansModel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.