PyTorchProcessor | R Documentation |
Handles Amazon SageMaker processing tasks for jobs using PyTorch containers.
sagemaker.common::Processor
-> sagemaker.common::ScriptProcessor
-> sagemaker.common::FrameworkProcessor
-> PyTorchProcessor
estimator_cls
Estimator object
new()
This processor executes a Python script in a PyTorch execution environment. Unless “image_uri“ is specified, the PyTorch environment is an Amazon-built Docker container that executes functions defined in the supplied “code“ Python script.
PyTorchProcessor$new( framework_version, role, instance_count, instance_type, py_version = "py3", image_uri = NULL, command = NULL, volume_size_in_gb = 30, volume_kms_key = NULL, output_kms_key = NULL, code_location = NULL, max_runtime_in_seconds = NULL, base_job_name = NULL, sagemaker_session = NULL, env = NULL, tags = NULL, network_config = NULL )
framework_version
(str): The version of the framework. Value is ignored when “image_uri“ is provided.
role
(str): An AWS IAM role name or ARN. Amazon SageMaker Processing uses this role to access AWS resources, such as data stored in Amazon S3.
instance_count
(int): The number of instances to run a processing job with.
instance_type
(str): The type of EC2 instance to use for processing, for example, 'ml.c4.xlarge'.
py_version
(str): Python version you want to use for executing your model training code. One of 'py2' or 'py3'. Defaults to 'py3'. Value is ignored when “image_uri“ is provided.
image_uri
(str): The URI of the Docker image to use for the processing jobs (default: None).
command
([str]): The command to run, along with any command-line flags to *precede* the “'code script“'. Example: ["python3", "-v"]. If not provided, ["python"] will be chosen (default: None).
volume_size_in_gb
(int): Size in GB of the EBS volume to use for storing data during processing (default: 30).
volume_kms_key
(str): A KMS key for the processing volume (default: None).
output_kms_key
(str): The KMS key ID for processing job outputs (default: None).
code_location
(str): The S3 prefix URI where custom code will be uploaded (default: None). The code file uploaded to S3 is 'code_location/job-name/source/sourcedir.tar.gz'. If not specified, the default “code location“ is 's3://sagemaker-default-bucket'
max_runtime_in_seconds
(int): Timeout in seconds (default: None). After this amount of time, Amazon SageMaker terminates the job, regardless of its current status. If 'max_runtime_in_seconds' is not specified, the default value is 24 hours.
base_job_name
(str): Prefix for processing name. If not specified, the processor generates a default job name, based on the processing image name and current timestamp (default: None).
sagemaker_session
(:class:'~sagemaker.session.Session'): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain (default: None).
env
(dict[str, str]): Environment variables to be passed to the processing jobs (default: None).
tags
(list[dict]): List of tags to be passed to the processing job (default: None). For more, see https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.
network_config
(:class:'~sagemaker.network.NetworkConfig'): A :class:'~sagemaker.network.NetworkConfig' object that configures network isolation, encryption of inter-container traffic, security group IDs, and subnets (default: None).
clone()
The objects of this class are cloneable with this method.
PyTorchProcessor$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.