| Object2Vec | R Documentation |
It can learn low-dimensional dense embeddings of high-dimensional objects. The embeddings are learned in a way that preserves the semantics of the relationship between pairs of objects in the original space in the embedding space.
sagemaker.mlcore::EstimatorBase -> sagemaker.mlcore::AmazonAlgorithmEstimatorBase -> Object2Vec
repo_namesagemaker repo name for framework
repo_versionversion of framework
MINI_BATCH_SIZEThe size of each mini-batch to use when training.
.modulemimic python module
epochsTotal number of epochs for SGD training
enc_dimDimension of the output of the embedding layer
mini_batch_sizemini batch size for SGD training
early_stopping_patienceThe allowed number of consecutive epochs without improvement before early stopping is applied
early_stopping_toleranceThe value used to determine whether the algorithm has made improvement between two consecutive epochs for early stopping
dropoutDropout probability on network layers
weight_decayWeight decay parameter during optimization
bucket_widthThe allowed difference between data sequence length when bucketing is enabled
num_classesNumber of classes for classification
mlp_layersNumber of MLP layers in the network
mlp_dimDimension of the output of MLP layer
mlp_activationType of activation function for the MLP layer
output_layerType of output layer
optimizerType of optimizer for training
learning_rateLearning rate for SGD training
negative_sampling_rateNegative sampling rate
comparator_listCustomization of comparator operator
tied_token_embedding_weightTying of token embedding layer weight
token_embedding_storage_typeType of token embedding storage
enc0_networkNetwork model of encoder "enc0"
enc1_networkNetwork model of encoder "enc1"
enc0_cnn_filter_widthCNN filter width
enc1_cnn_filter_widthCNN filter width
enc0_max_seq_lenMaximum sequence length
enc1_max_seq_lenMaximum sequence length
enc0_token_embedding_dimOutput dimension of token embedding layer
enc1_token_embedding_dimOutput dimension of token embedding layer
enc0_vocab_sizeVocabulary size of tokens
enc1_vocab_sizeVocabulary size of tokens
enc0_layersNumber of layers in encoder
enc1_layersNumber of layers in encoder
enc0_freeze_pretrained_embeddingFreeze pretrained embedding weights
enc1_freeze_pretrained_embeddingFreeze pretrained embedding weights
sagemaker.mlcore::EstimatorBase$latest_job_debugger_artifacts_path()
sagemaker.mlcore::EstimatorBase$latest_job_profiler_artifacts_path()
sagemaker.mlcore::EstimatorBase$latest_job_tensorboard_artifacts_path()
sagemaker.mlcore::AmazonAlgorithmEstimatorBase$hyperparameters()
sagemaker.mlcore::AmazonAlgorithmEstimatorBase$prepare_workflow_for_training()
sagemaker.mlcore::AmazonAlgorithmEstimatorBase$training_image_uri()
new()Object2Vec is :class:'Estimator' used for anomaly detection. This Estimator may be fit via calls to :meth:'~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit'. There is an utility :meth:'~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set' that can be used to upload data to S3 and creates :class:'~sagemaker.amazon.amazon_estimator.RecordSet' to be passed to the 'fit' call. After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker Endpoint by invoking :meth:'~sagemaker.amazon.estimator.EstimatorBase.deploy'. As well as deploying an Endpoint, deploy returns a :class:'~sagemaker.amazon.Predictor' object that can be used for inference calls using the trained model hosted in the SageMaker Endpoint. Object2Vec Estimators can be configured by setting hyperparameters. The available hyperparameters for Object2Vec are documented below. For further information on the AWS Object2Vec algorithm, please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/object2vec.html
Object2Vec$new( role, instance_count, instance_type, epochs, enc0_max_seq_len, enc0_vocab_size, enc_dim = NULL, mini_batch_size = NULL, early_stopping_patience = NULL, early_stopping_tolerance = NULL, dropout = NULL, weight_decay = NULL, bucket_width = NULL, num_classes = NULL, mlp_layers = NULL, mlp_dim = NULL, mlp_activation = NULL, output_layer = NULL, optimizer = NULL, learning_rate = NULL, negative_sampling_rate = NULL, comparator_list = NULL, tied_token_embedding_weight = NULL, token_embedding_storage_type = NULL, enc0_network = NULL, enc1_network = NULL, enc0_cnn_filter_width = NULL, enc1_cnn_filter_width = NULL, enc1_max_seq_len = NULL, enc0_token_embedding_dim = NULL, enc1_token_embedding_dim = NULL, enc1_vocab_size = NULL, enc0_layers = NULL, enc1_layers = NULL, enc0_freeze_pretrained_embedding = NULL, enc1_freeze_pretrained_embedding = NULL, ... )
role(str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs that create Amazon SageMaker endpoints use this role to access training data and model artifacts. After the endpoint is created, the inference code might use the IAM role, if accessing AWS resource.
instance_count(int): Number of Amazon EC2 instances to use for training.
instance_type(str): Type of EC2 instance to use for training, for example, 'ml.c4.xlarge'.
epochs(int): Total number of epochs for SGD training
enc0_max_seq_len(int): Maximum sequence length
enc0_vocab_size(int): Vocabulary size of tokens
enc_dim(int): Optional. Dimension of the output of the embedding layer
mini_batch_size(int): Optional. mini batch size for SGD training
early_stopping_patience(int): Optional. The allowed number of consecutive epochs without improvement before early stopping is applied
early_stopping_tolerance(float): Optional. The value used to determine whether the algorithm has made improvement between two consecutive epochs for early stopping
dropout(float): Optional. Dropout probability on network layers
weight_decay(float): Optional. Weight decay parameter during optimization
bucket_width(int): Optional. The allowed difference between data sequence length when bucketing is enabled
num_classes(int): Optional. Number of classes for classification
mlp_layers(int): Optional. Number of MLP layers in the network
mlp_dim(int): Optional. Dimension of the output of MLP layer
mlp_activation(str): Optional. Type of activation function for the MLP layer
output_layer(str): Optional. Type of output layer
optimizer(str): Optional. Type of optimizer for training
learning_rate(float): Optional. Learning rate for SGD training
negative_sampling_rate(int): Optional. Negative sampling rate
comparator_list(str): Optional. Customization of comparator operator
tied_token_embedding_weight(bool): Optional. Tying of token embedding layer weight
token_embedding_storage_type(str): Optional. Type of token embedding storage
enc0_network(str): Optional. Network model of encoder "enc0"
enc1_network(str): Optional. Network model of encoder "enc1"
enc0_cnn_filter_width(int): Optional. CNN filter width
enc1_cnn_filter_width(int): Optional. CNN filter width
enc1_max_seq_len(int): Optional. Maximum sequence length
enc0_token_embedding_dim(int): Optional. Output dimension of token embedding layer
enc1_token_embedding_dim(int): Optional. Output dimension of token embedding layer
enc1_vocab_size(int): Optional. Vocabulary size of tokens
enc0_layers(int): Optional. Number of layers in encoder
enc1_layers(int): Optional. Number of layers in encoder
enc0_freeze_pretrained_embedding(bool): Optional. Freeze pretrained embedding weights
enc1_freeze_pretrained_embedding(bool): Optional. Freeze pretrained embedding weights
...: base class keyword argument values.
training(ignored for regression problems)
create_model()Return a :class:'~sagemaker.amazon.Object2VecModel' referencing the latest s3 model data produced by this Estimator.
Object2Vec$create_model(vpc_config_override = "VPC_CONFIG_DEFAULT", ...)
vpc_config_override(dict[str, list[str]]): Optional override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids.
...: Additional kwargs passed to the Object2VecModel constructor.
.prepare_for_training()Set hyperparameters needed for training. This method will also validate “source_dir“.
Object2Vec$.prepare_for_training( records, mini_batch_size = NULL, job_name = NULL )
records(RecordSet) – The records to train this Estimator on.
mini_batch_size(int or None) – The size of each mini-batch to use when training. If None, a default value will be used.
job_name(str): Name of the training job to be created. If not specified, one is generated, using the base name given to the constructor if applicable.
clone()The objects of this class are cloneable with this method.
Object2Vec$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.