PyTorchPredictor | R Documentation |
This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for PyTorch inference.
sagemaker.mlcore::PredictorBase
-> sagemaker.mlcore::Predictor
-> PyTorchPredictor
new()
Initialize an “PyTorchPredictor“.
PyTorchPredictor$new( endpoint_name, sagemaker_session = NULL, serializer = NumpySerializer$new(), deserializer = NumpyDeserializer$new() )
endpoint_name
(str): The name of the endpoint to perform inference on.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain.
serializer
(sagemaker.serializers.BaseSerializer): Optional. Default serializes input data to .npy format. Handles lists and numpy arrays.
deserializer
(sagemaker.deserializers.BaseDeserializer): Optional. Default parses the response from .npy format to numpy array.
clone()
The objects of this class are cloneable with this method.
PyTorchPredictor$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.