| HuggingFacePredictor | R Documentation |
This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for Hugging Face inference.
sagemaker.mlcore::PredictorBase -> sagemaker.mlcore::Predictor -> HuggingFacePredictor
new()Initialize an “HuggingFacePredictor“.
HuggingFacePredictor$new( endpoint_name, sagemaker_session = NULL, serializer = JSONSerializer$new(), deserializer = JSONDeserializer$new() )
endpoint_name(str): The name of the endpoint to perform inference on.
sagemaker_session(sagemaker.session.Session): Session object that manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain.
serializer(sagemaker.serializers.BaseSerializer): Optional. Default serializes input data to .npy format. Handles lists and numpy arrays.
deserializer(sagemaker.deserializers.BaseDeserializer): Optional. Default parses the response from .npy format to numpy array.
clone()The objects of this class are cloneable with this method.
HuggingFacePredictor$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.