MXNetPredictor | R Documentation |
A Predictor for inference against MXNet Endpoints. This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for MXNet inference.
sagemaker.mlcore::PredictorBase
-> sagemaker.mlcore::Predictor
-> MXNetPredictor
new()
Initialize an “MXNetPredictor“.
MXNetPredictor$new( endpoint_name, sagemaker_session = NULL, serializer = JSONSerializer$new(), deserializer = JSONDeserializer$new() )
endpoint_name
(str): The name of the endpoint to perform inference on.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain.
serializer
(callable): Optional. Default serializes input data to json. Handles dicts, lists, and numpy arrays.
deserializer
(callable): Optional. Default parses the response using “json.load(...)“.
clone()
The objects of this class are cloneable with this method.
MXNetPredictor$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.